Predict whether each of the conditions would cause increased or decreased ventilation

  1. Vieillard-Baron A, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42(5):739–49.

    CAS  Article  PubMed  Google Scholar 

  2. Beitler JR, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42(9):1427–36.

    Article  PubMed  Google Scholar 

  3. Files DC, Sanchez MA, Morris PE. A conceptual framework: the early and late phases of skeletal muscle dysfunction in the acute respiratory distress syndrome. Crit Care. 2015;19:266.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petrof BJ, Hussain SN. Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care. 2016;22(1):67–72.

    Article  PubMed  Google Scholar 

  5. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416.

    Article  Google Scholar 

  6. Vieillard-Baron A, Jardin F. The issue of dynamic hyperinflation in acute respiratory distress syndrome patients. Eur Respir J Suppl. 2003;42:43s–7s.

    CAS  Article  PubMed  Google Scholar 

  7. Gattinoni L, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15s–25s.

    CAS  Article  PubMed  Google Scholar 

  8. Chiumello D, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178(4):346–55.

    Article  PubMed  Google Scholar 

  9. Pelosi P, et al. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109(1):144–51.

    CAS  Article  PubMed  Google Scholar 

  10. Vawter DL, Matthews FL, West JB. Effect of shape and size of lung and chest wall on stresses in the lung. J Appl Physiol. 1975;39(1):9–17.

    CAS  PubMed  Google Scholar 

  11. Akoumianaki E, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.

    Article  PubMed  Google Scholar 

  12. Mauri T, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.

    Article  PubMed  Google Scholar 

  13. Annat G, et al. Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology. 1983;58(2):136–41.

    CAS  Article  PubMed  Google Scholar 

  14. Kuiper JW, et al. Mechanical ventilation and acute renal failure. Crit Care Med. 2005;33(6):1408–15.

    Article  PubMed  Google Scholar 

  15. Bredenberg CE, Paskanik A, Fromm D. Portal hemodynamics in dogs during mechanical ventilation with positive end-expiratory pressure. Surgery. 1981;90(5):817–22.

    CAS  PubMed  Google Scholar 

  16. Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest. 2001;119(4):1222–41.

    CAS  Article  PubMed  Google Scholar 

  17. Putensen C, Wrigge H, Hering R. The effects of mechanical ventilation on the gut and abdomen. Curr Opin Crit Care. 2006;12(2):160–5.

    Article  PubMed  Google Scholar 

  18. Gama de Abreu M, Guldner A, Pelosi P. Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. Curr Opin Anaesthesiol. 2012;25(2):148–55.

    Article  PubMed  Google Scholar 

  19. Barach AL, Martin J, Eckman M. Positive pressure respiration and its application to the treatment of acute pulmonary edema. Ann Intern Med. 1938;12:754–95.

    Article  Google Scholar 

  20. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.

    Article  PubMed  Google Scholar 

  21. Yoshida T, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40(5):1578–85.

    Article  PubMed  Google Scholar 

  22. Yoshida T, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188(12):1420–7.

    Article  PubMed  Google Scholar 

  23. Yoshida T, et al. Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure. Crit Care Med. 2016;44(8):e678–88.

    Article  PubMed  Google Scholar 

  24. Kumar A, et al. Pulmonary barotrauma during mechanical ventilation. Crit Care Med. 1973;1(4):181–6.

    CAS  Article  PubMed  Google Scholar 

  25. Pontoppidan H, Geffin B, Lowenstein E. Acute respiratory failure in the adult. 2. N Engl J Med. 1972;287(15):743–52.

    CAS  Article  PubMed  Google Scholar 

  26. Hayes DF, Lucas CE. Bilateral tube thoracostomy to preclude fatal tension pneumothorax in patients with acute respiratory insufficiency. Am Surg. 1976;42(5):330–1.

    CAS  PubMed  Google Scholar 

  27. Zimmerman JE, Dunbar BS, Klingenmaier CH. Management of subcutaneous emphysema, pneumomediastinum, and pneumothorax during respirator therapy. Crit Care Med. 1975;3(2):69–73.

    CAS  Article  PubMed  Google Scholar 

  28. de Latorre FJ, et al. Incidence of pneumothorax and pneumomediastinum in patients with aspiration pneumonia requiring ventilatory support. Chest. 1977;72(2):141–4.

    Article  PubMed  Google Scholar 

  29. Woodring JH. Pulmonary interstitial emphysema in the adult respiratory distress syndrome. Crit Care Med. 1985;13(10):786–91.

    CAS  Article  PubMed  Google Scholar 

  30. Gammon RB, Shin MS, Buchalter SE. Pulmonary barotrauma in mechanical ventilation. Patterns and risk factors. Chest. 1992;102(2):568–72.

    CAS  Article  PubMed  Google Scholar 

  31. Marini JJ, Culver BH. Systemic gas embolism complicating mechanical ventilation in the adult respiratory distress syndrome. Ann Intern Med. 1989;110(9):699–703.

    CAS  Article  PubMed  Google Scholar 

  32. Dreyfuss D, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137(5):1159–64.

    CAS  Article  PubMed  Google Scholar 

  33. Protti A, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016;44(9):e838–45.

    Article  PubMed  Google Scholar 

  34. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31(6):776–84.

    Article  PubMed  Google Scholar 

  35. ARDS Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  36. Hager DN, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172(10):1241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nuckton TJ, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.

    Article  PubMed  Google Scholar 

  38. Nin N, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200–8.

    Article  PubMed  Google Scholar 

  39. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110(5):556–65.

    CAS  PubMed  Google Scholar 

  40. Kolobow T, et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis. 1987;135(2):312–5.

    CAS  PubMed  Google Scholar 

  41. Broccard A, et al. Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med. 2000;28(2):295–303.

    CAS  Article  PubMed  Google Scholar 

  42. Nishimura M, et al. Body position does not influence the location of ventilator-induced lung injury. Intensive Care Med. 2000;26(11):1664–9.

    CAS  Article  PubMed  Google Scholar 

  43. Belperio JA, et al. Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury. J Clin Invest. 2002;110(11):1703–16.

  44. Amato MB, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    CAS  Article  PubMed  Google Scholar 

  45. Brochard L, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158(6):1831–8.

    CAS  Article  PubMed  Google Scholar 

  46. Stewart TE, et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med. 1998;338(6):355–61.

    CAS  Article  PubMed  Google Scholar 

  47. Brower RG, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27(8):1492–8.

    CAS  Article  PubMed  Google Scholar 

  48. Fanelli V, et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Crit Care. 2016;20:36.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gattinoni L. Ultra-protective ventilation and hypoxemia. Crit Care. 2016;20(1):130.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tobin MJ. Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1360–1.

    CAS  Article  PubMed  Google Scholar 

  51. Protti A, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183(10):1354–62.

    Article  PubMed  Google Scholar 

  52. Protti A, et al. Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp. 2015;3(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Australia, et al. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA. 2009;302(17):1888–95.

    Article  Google Scholar 

  54. Grasso S, et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med. 2012;38(3):395–403.

    CAS  Article  PubMed  Google Scholar 

  55. Retamal J, et al. Open lung approach ventilation abolishes the negative effects of respiratory rate in experimental lung injury. Acta Anaesthesiol Scand. 2016;60(8):1131–41.

    CAS  Article  PubMed  Google Scholar 

  56. Hotchkiss Jr JR, et al. Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med. 2000;161(2 Pt 1):463–8.

    Article  PubMed  Google Scholar 

  57. Cressoni M, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–8.

    Article  PubMed  Google Scholar 

  58. Dreyfuss D, Ricard JD, Gaudry S. Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago. Intensive Care Med. 2015;41(12):2076–86.

    Article  PubMed  Google Scholar 

  59. Rich PB, et al. Effect of rate and inspiratory flow on ventilator-induced lung injury. J Trauma. 2000;49(5):903–11.

    CAS  Article  PubMed  Google Scholar 

  60. Maeda Y, et al. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101(3):722–8.

    Article  PubMed  Google Scholar 

  61. Garcia CS, et al. Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Crit Care Med. 2008;36(1):232–9.

    Article  PubMed  Google Scholar 

  62. Esteban A, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345–55.

    Article  PubMed  Google Scholar 

  63. Villar J, et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 2011;37(12):1932–41.

    Article  PubMed  Google Scholar 

  64. Bellani G, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.

    CAS  Article  PubMed  Google Scholar 

  65. Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28(5):596–608.

    CAS  PubMed  Google Scholar 

  66. Cressoni M, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189(2):149–58.

    CAS  PubMed  Google Scholar 

  67. Gattinoni L, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.

    CAS  Article  PubMed  Google Scholar 

  68. Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42(10):1597–600.

    Article  PubMed  Google Scholar 

  69. Guldner A, et al. The authors reply. Crit Care Med. 2017;45(3):e328–9.

    Article  PubMed  Google Scholar 

  70. Goebel U, et al. Flow-controlled expiration: a novel ventilation mode to attenuate experimental porcine lung injury. Br J Anaesth. 2014;113(3):474–83.

    CAS  Article  PubMed  Google Scholar 

  71. Schumann S, et al. Determination of respiratory system mechanics during inspiration and expiration by FLow-controlled EXpiration (FLEX): a pilot study in anesthetized pigs. Minerva Anestesiol. 2014;80(1):19–28.

    CAS  PubMed  Google Scholar 

  72. Gattinoni L, et al. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188(11):1286–93.

    CAS  Article  PubMed  Google Scholar 

  73. Guerin C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    CAS  Article  PubMed  Google Scholar 

  74. Agostoni E., Hyatt RE. Static behaviour of the respiratory system. In: Maklem PT, Mead J, Fishman AP. Handbook of physiology. MD: Bethesda; 1986. pp 113-130.

  75. Brower RG, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.

    Article  PubMed  Google Scholar 

  76. Meade MO, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–45.

    CAS  Article  PubMed  Google Scholar 

  77. Briel M, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.

    CAS  Article  PubMed  Google Scholar 


Page 2

  Positive pressure ventilation Negative pressure ventilation
Spontaneous Artificial
Respiratory system motor Energy from ventilator generating the airway pressure (P aw) Energy from muscular contraction generating muscular pressure (P musc) Energy from device generating negative pressure (P neg)
Lung motor Transpulmonary pressure (P L) generated by positive increase of P aw and pleural pressure (P pl) Transpulmonary pressure (P L) generated by decrease of pleural pressure (P pl) Transpulmonary pressure (P L) generated by decrease of pleural pressure (P pl)
Chest wall motor Pleural pressure (P pl = P aw – P L) Wall pressurea (P W = P musc – P pl) Wall pressurea (P W = P neg – P pl)

  1. aWall pressure is the component of total muscular (or externally applied negative pressure) needed to expand the chest wall itself