Qual é a fonte de energia utilizada pela ATP sintase para Asíntese de ATP na cadeia de transporte de elétrons?

Fosforilação Oxidativa é uma das etapas metabólicas da respiração celular. Acontece apenas na presença de oxigênio (seres aeróbicos), que é necessário para oxidar moléculas intermediárias e participar de reações para formação da molécula de ATP e produzir energia.

O que é a Fosforilação Oxidativa?

Nas primeiras etapas da respiração celular (glicólise e ciclo de Krebs), parte da energia produzida na degradação de compostos é armazenada em moléculas intermediárias, as coenzimas, como o NAD+ e o FAD+.

Essa energia de oxidação das coenzimas é utilizada para a síntese de ATP. Para isso ocorre a fosforilação do ADP, ou seja, ele recebe grupos fosfato. Por isso esse processo é chamado Fosforilação Oxidativa.

É muito importante, entretanto, que as coenzimas sejam reoxidadas, de forma a poderem participar novamente dos ciclos de degradação de nutrientes, doando mais energia para a síntese de ATP.

O processo de fosforilação oxidativa acontece apenas nos seres aeróbios, nos quais o oxigênio faz a reoxidação das coenzimas através de uma cadeia de transporte de elétrons ou cadeia respiratória, como também é chamada.

Leia também:

  • ATP
  • Mitocôndrias: estrutura, função e importância
  • Enzimas
  • Respiração Celular
  • Metabolismo Celular

Cadeia Transportadora de Elétrons

Muitas reações químicas que produzem energia, a liberam na forma de calor, o que não seria um mecanismo apropriado para as células.

Para resolver essa situação, a estratégia celular é formar um gradiente de prótons e produzir uma molécula “carregadora” de energia chamada ATP. Essa síntese é intermediada por um complexo enzimático chamado ATP-sintase.

Qual é a fonte de energia utilizada pela ATP sintase para Asíntese de ATP na cadeia de transporte de elétrons?
Esquema da cadeia transportadora de elétrons, cujas moléculas estão inseridas na membrana mitocondrial

O gradiente protônico é formado através da cadeia transportadora de elétrons, que são moléculas que se encontram inseridas na membrana das mitocôndrias, além de dois componentes móveis (coenzima Q e citocromo c). Essas moléculas são organizadas segundo seu potencial de oxirredução.

Portanto, a energia vai sendo liberada aos poucos através dessas moléculas integrantes da cadeia respiratória e somente no final da mesma o hidrogênio se une ao oxigênio formando água.

O saldo energético dessa etapa, ou seja, o que é produzido ao longo de toda a cadeia transportadora de elétrons é de 38 ATPs.

Saiba mais sobre o Metabolismo energético.

Estrutura das Mitocôndrias

  • Mitocôndria:
    • Organelos de membrana dupla
    • Gera energia para a célula na forma de trifosfato de adenosina (ATP)
    • Fornece sinais importantes para o corpo e auxiliam na diferenciação celular e morte celular
  • Membranas internas e externas envolvem as mitocôndrias:
    • Compostas por uma bicamada fosfolipídica e proteína
    • Membrana interna:
      • Contém proteínas que geram reações necessárias para a ETC (por exemplo, ATP sintase).
      • Possui invaginações chamadas cristas, que abrigam complexos respiratórios
      • Cristas são dobras que aumentam a área de superfície da membrana interna e efetivamente aumentam a capacidade respiratória das mitocôndrias.
      • A membrana interna é permeável apenas ao O2 , CO2 e H2O.
    • Matriz: espaço dentro da membrana interna
      • Local de proteínas importantes: enzimas e intermediários do ciclo do ácido cítrico e oxidação do piruvato
      • Contém o genoma do DNA mitocondrial
      • O ADP e o fosfato inorgânico (P i ) são especificamente transportados para a matriz à medida que o ATP recém-sintetizado é transportado para fora.
    • Membrana externa: contém porinas que permitem a difusão de iões e metabolitos
      • A passagem de metabolitos, como ATP, ADP, ião cálcio (Ca2+) e fosfato é um processo mediado por proteínas de transporte:
        • Armazena canais aniónicos dependentes de voltagem, que permitem o trânsito de nucleotídeos e iões
        • Permite a geração de gradientes de iões
      • Transportadores específicos carregam piruvato, ácidos gordos e aminoácidos ou os seus alfa-ceto derivados na matriz para acesso à maquinaria do ciclo do ácido cítrico.
    • Espaço intermembranar: entre as membranas externa e interna
      • Contém as mesmas pequenas moléculas que estão presentes no citosol
      • Região controlada com diferentes grandes proteínas que são reguladas pela membrana externa

Qual é a fonte de energia utilizada pela ATP sintase para Asíntese de ATP na cadeia de transporte de elétrons?

Anatomia da mitocôndria:
As estruturas importantes da mitocôndria incluem a membrana externa, o espaço intermembranar, a membrana interna e a matriz.

Imagem por Lecturio.

Vídeos recomendados

Complexos da ETC

Complexo I

  • NADH: ubiquinona oxidorredutase
  • O complexo enzimático move 2 eletrões do NADH para um carregador (ubiquinona) através de uma reação “redox” que desloca 4 protões.
  • Os protões são bombeados da matriz para o espaço intermembranar.

Complexo II

  • Succinato desidrogenase
  • Entrega eletrões para o pool de quinona
  • Transfere FAD para quinona

Complexo III

  • Coenzima Q-citocromo c redutase
  • 4 protões translocados para o espaço intermembranar
  • Complexo inibido por dimercaprol

Complexo IV

  • Citocromo c oxidase
  • 4 eletrões transferidos para O2 e produzem 2 moléculas de H2O.
  • 8 protões adicionados ao gradiente de protões

Transporte de Elétrons

  • Membrana mitocondrial interna:
    • Principalmente impermeável a moléculas e iões, como iões de hidrogénio (H+)
    • Separa os intermediários e enzimas das vias metabólicas no citosol daqueles que ocorrem na matriz mitocondrial
    • Contém cofatores que foram reduzidos ao longo das vias catabólicas que ocorrem em diferentes compartimentos celulares
    • Carrega o compartimento da cadeia respiratória e a ATP sintase
  • Matriz mitocondrial:
    • Contém as enzimas do complexo piruvato desidrogenase
    • Também contém as enzimas do ciclo do ácido cítrico, a via de beta-oxidação de ácidos gordos e outras vias envolvidas na oxidação de aminoácidos.
  • Aqui, o transporte de eletrões através de 3 complexos respiratórios é acoplado ao bombeamento exterior de protões.

Qual é a fonte de energia utilizada pela ATP sintase para Asíntese de ATP na cadeia de transporte de elétrons?

Membranas mitocondriais:
As proteínas-chave estão dentro da membrana interna. O ciclo do ácido cítrico é crucial para o processo, pois fornece NADH para a cadeia de transporte de eletrões (ETC).

Imagem por Lecturio.

Fosforilação Oxidativa

  • A ETC está ligada à fosforilação oxidativa através do gradiente de protões.
  • A ATP sintase aproveita o gradiente de protões através da fosforilação oxidativa para gerar ATP:
    • A ATP sintase funciona como um canal iónico para os protões retornarem à matriz mitocondrial.
    • A energia é gerada pelo fluxo de protões, usado para a síntese de ATP.
  • Existem várias maneiras de gerar ATP:
    • Glicolise:
      • São produzidos 2 ATP durante a glicólise.
      • São reduzidos 2 NAD+ a NADH.
      • 2 moléculas de piruvato são então usadas para produzir 2 moléculas de Acetil-CoA pela piruvato desidrogenase, que produz 1 NADH cada.
      • 2 Moléculas de acetil-CoA entram no ciclo do ácido cítrico, onde se condensam com oxaloacetato e geram:
        • 2 trifosfatos de guanosina (GTP), convertidos em 2 ATPs
        • 6 NADH
        • 2 FADH2
  • A ETC é crucial para configurar o gradiente de protões:
    • Cada NADH entra na cadeia de transporte de eletrões no complexo I, onde é reoxidado e passa os seus eletrões para a CoQ.
    • Os eletrões fluem da CoQ para o complexo III, que os retransmite através do citocromo c para o complexo IV.
    • Aqui, são aceites pelo O2.
    • Tanto o complexo I quanto o complexo III transportam 4 protões cada um para o espaço intermembranar, enquanto o complexo IV bombeia 2 para o espaço membranar por cada par de eletrões.
    • 6 NADH produzidos durante o ciclo do ácido cítrico geram 60 protões no espaço intermembranar.
  • 2 ATP gerados durante a glicólise e 2 produzidos no ciclo do ácido cítrico

Tabela: Protões transportados para o espaço intermembranar como resultado da oxidação de 1 molécula de palmitoil-CoA em CO 2 e H 2

Etapa de oxidação catalisadora da enzimaNúmero de NADH ou FADH 2 formadoNúmero de protões que no final são translocados para o espaço intermembranar
Acil-CoA desidrogenase7 FADH 2 42
Beta-hidroxiacil-CoA desidrogenase7 NADH 70
Isocitrato desidrogenase8 NADH 80
Alfa-cetoglutarato desidrogenase8 NADH 80
Succinato desidrogenase8 FADH 2 48
Malato desidrogenase8 NADH 80
Total 400

Controlo da Fosforilação Oxidativa

  • Existem mecanismos de regulação importantes para controlar a taxa de glicólise, o ciclo do ácido cítrico, a oxidação do piruvato e a fosforilação oxidativa pelas concentrações relativas:
    • ATP
    • ADP
    • AMP
    • NADH
  • A glicólise, a degradação de ácidos gordos e o ciclo do ácido cítrico constituem as fontes primárias de eletrões que entram na ETC mitocondrial.
  • O controlo da glicólise e do ciclo do ácido cítrico é coordenado com a necessidade de fosforilação oxidativa.
  • A fosforilação oxidativa é mantida pelos requisitos de energia celular:
    • O ADP intracelular e o ATP são medidas do estado de energia de uma célula.
    • Um suprimento adequado de eletrões para alimentar a cadeia de transporte de eletrões é fornecido pela regulação dos pontos de controlo da glicólise e do ciclo do ácido cítrico pelo NADH e metabolitos:
      • Fosfofrutoquinase (PFK, pela sigla em inglês)
      • Piruvato desidrogenase
      • Citrato sintase
      • Isocitrato desidrogenase (IDH, pela sigla em inglês)
      • Alfa-cetoglutarato desidrogenase
  • O bloqueio do ciclo do ácido cítrico e a glicólise pelo citrato, que dificulta a glicólise, facilita o modo de ação do sistema de nucleotídeos da adenina:
    • Níveis aumentados de NADH e acetil-CoA impedem a oxidação do piruvato em acetil-CoA.
    • Uma alta relação NADH/NAD+ dificulta as reações de desidrogenase no ciclo do ácido cítrico.
  • Outro efeito regulador importante é a inibição de PFK pelo citrato:
    • Quando a necessidade de ATP diminui, o ATP aumenta e o ADP diminui.
    • Como o ADP ativa a IDH e o ATP inibe a alfa-cetoglutarato desidrogenase, o ciclo do ácido cítrico diminui.
    • A desaceleração leva a uma acumulação da concentração de citrato.
    • O citrato deixa a mitocôndria através de um sistema de transporte específico e, uma vez no citosol, atua para conter a degradação de hidratos de carbono, inibindo a PFK.

Referências

  1. Ahmad, M, Woiberg, A, Kahwaji, CI. (2020). Biochemistry, electron transport chain. StatPearls. Retrieved May 26, 2021, from https://www.ncbi.nlm.nih.gov/books/NBK526105/
  2. Cooper, GM. (2000). The mechanism of oxidative phosphorylation. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9885/
  3. Alberts, B, Johnson, A, Lewis, J, et al. (2002). Electron-transport chains and their proton pumps. Molecular Biology of the Cell. 4th edition. New York: Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26904/

Qual e a fonte de energia usada para acionar a ATP sintase?

Ao invés de ser acionada pela água, ela é acionada pelo fluxo de íons H +start superscript, plus, end superscript movendo-se a favor de seu gradiente eletroquímico. À medida que a ATP sintase transforma a energia, ela catalisa a adição de um fosfato ao ADP, capturando a energia do gradiente de prótons na forma de ATP.

Como a cadeia de transporte de elétrons possibilita a síntese de ATP?

A síntese de ATP resultante do transporte de elétrons, ocorre em virtude da energia livre liberada durante o fluxo de prótons que ocorre entre os complexos transportadores de elétrons e prótons que comunicam a matriz mitocondrial e o espaço intermembrana.

Como ATP sintase produz ATP?

Síntese de ATP Após a hidrólise da ATP, essa molécula pode ser regenerada pela fosforilação da molécula de ADP. Os processos de produção de ATP e liberação de energia, por meio de sua hidrólise, formam o ciclo da ATP.

Como ocorre o transporte de elétrons na cadeia respiratória?

Também chamada de fosforilação oxidativa, a cadeia respiratória é a terceira etapa da respiração celular ou aeróbica, e ocorre na membrana interna da mitocôndria. Nessa etapa, os elétrons obtidos na quebra do átomo de hidrogênio são transportados através do NADH e FADH 2 até o oxigênio.