Como a perda de água e regulada pelos estômatos?

Mestre em Ecologia e Recursos Naturais (UFSCAR, 2019)
Bacharel em Ciências Biológicas (UNIFESP, 2015)

Ouça este artigo:

O processo de transpiração vegetal engloba a passagem de água por todo o corpo da planta, desde sua absorção nas raízes, transporte através do xilema, movimentação até as porções superiores da parte aérea culminando com a sua evaporação na superfície das folhas através dos estômatos. Calcula-se que mais de 95% da água que uma planta absorve do solo seja perdida através deste processo, que é importante para a manutenção térmica da planta, controle de sua turgidez e pressão osmótica além de permitir que a água sirva como um meio de conduzir nutrientes minerais para todos os tecidos que compõem o vegetal.

A transpiração vegetal é um processo primordial executado pelas plantas, possuindo uma regulação detalhada que pode ser modulada. Um exemplo de mecanismo de controle de transpiração é o aumento ou redução na quantidade de folhas ou estruturas fotossinteticamente ativas. Quanto mais folhas, maior a quantidade de estômatos e de superfície de trocas gasosas e, consequentemente, maior a perda de água. Em ambientes úmidos, em que a água não é um fator limitante, esta pode ser uma ótima estratégia para aumentar a taxa de fotossíntese. Outra alternativa seria controlar a quantidade e a exposição dos estômatos. Plantas adaptadas a ambientes secos como desertos muitas vezes possuem seus estômatos escondidos, realizando a sua abertura no período noturno quando a perda de água será menor (devido à baixa temperatura ambiental). Também se observa que o tamanho da folha influencia na taxa de transpiração. Grandes folhas possuem maior área de exposição e transpiram mais do que folhas melhores. As plantas podem ainda serem dotadas de cutículas com ceras impermeabilizantes, tornando a superfície do corpo vegetal uma área de pouquíssima perda de água. Além da cutícula, também encontramos na natureza plantas com pelos (tricomas) nas folhas, estruturas que auxiliam na manutenção da umidade foliar reduzindo a transpiração.

Como a perda de água e regulada pelos estômatos?

Fotografia de estômatos em uma folha. Foto: Dimarion / Shutterstock.com

Os fatores abióticos também influenciam na taxa de transpiração vegetal. A temperatura, por exemplo, causa um aumento na perda de água até um limite no qual a umidade atmosférica ao redor da planta se iguale àquela do interior dos tecidos. Aumentos muito drásticos de temperatura podem levar a desidratação da planta, que passa a apresentar um estado de secura, intensificando o gradiente de potencial hídrico e fazendo com que a raiz absorva mais água do solo. O vento também é um importante fator que atua na taxa de transpiração. Em baixas intensidades, ele afeta pouco este processo, uma vez que a umidade ao redor da planta aumenta causando uma estabilização na perda d’água. Quando a velocidade do vento aumenta, ele carreia esta umidade, aumentando a transpiração. Esse efeito é continuo sem que haja uma estabilização, o que pode ser danoso para a planta caso ela fique exposta a fortes ventos por longos períodos de tempo. Por isso vegetais em altitude apresentam hábitos herbáceos ou arbustivos e crescem melhor nas porções de relevo que são menos atingidas pelo vento. A umidade afeta inversamente a taxa de transpiração. Quando a umidade relativa no ambiente é muito baixa, a transpiração é elevada, enquanto que com uma alta umidade atmosférica observa-se baixa transpiração (pois a concentração de água no ambiente é maior do que nos tecidos vegetais).

Referências:

Hygen, G., 1951. Studies in plant transpiration I. Physiologia Plantarum, 4(1), pp.57-183.

Raven, P.H., Evert, R.F. and Eichhorn, S.E., 2005. Biology of plants. Macmillan.

Smith, W.K. and Geller, G.N., 1979. Plant transpiration at high elevations: theory, field measurements, and comparisons with desert plants. Oecologia, 41(1), pp.109-122.

Texto originalmente publicado em https://www.infoescola.com/biologia/transpiracao-vegetal/

A abertura e o fechamento dos estômatos são determinados pela pressão de turgor nas células-guarda.

Sabemos que o estômato é uma estrutura responsável por controlar as trocas gasosas no vegetal. Ele está diretamente relacionado a processos essenciais para a sobrevivência da planta, tais como respiração, transpiração e fotossíntese.

Para compreendermos o mecanismo de abertura e fechamento, antes é necessário relembrar a estrutura básica de um estômato. Essa estrutura é encontrada na epiderme e é formada por duas células (células-guarda) que delimitam um pequeno espaço denominado ostíolo.

Sabe-se que o estômato controla a entrada e a saída de gases, abrindo e fechando o ostíolo. Esse mecanismo também é importante, pois possibilita a planta evitar a perda excessiva de água.

O que mantém um estômato aberto ou fechado é a pressão de turgor. Quando as células-guarda estão túrgidas, o ostíolo permanece aberto. Quando essas células estão flácidas, o poro fecha-se. O movimento estomático é controlado principalmente, em situções de estresse, por um hormônio vegetal, o ácido abscísico, também chamado de ABA.

O ABA atua ligando-se a receptores na membrana plasmática das células-guarda. Essa ligação faz com que canais de Ca2+ (íons de cálcio) abram-se, gerando uma entrada desse íon para o citoplasma da célula.  Nesse caso, o Ca2+ agirá como um mensageiro secundário e causará a abertura de canais iônicos na membrana plasmática.

Não pare agora... Tem mais depois da publicidade ;)

A abertura dos canais levará a uma passagem de ânions do interior da célula para a parede celular. Os principais ânions que fazem essa passagem são o Cl- (íons de cloro) e o malato2-. Esse movimento faz com que os canais de K+ (íons de potássio) abram-se e, consequentemente, ocorre o movimento do K+ do citoplasma para a parede celular.

Todo esse processo, em que o Cl-, malato2- e K+ saem do citoplasma em direção à parede, faz com que a água se mova também para a parede celular. Quando isso ocorre, as células-guarda ficam flácidas e ocorre o fechamento do estômato.

Quando o ABA se separa de seu receptor na membrana plasmática, os íons retornam para o citoplasma e a água, por osmose, volta ao interior da célula. Isso faz com que as células-guarda fiquem túrgidas e, consequentemente, o estômato abre-se.

A abertura e o fechamento dos estômatos são uma estratégia da planta para a sua sobrevivência, uma vez que, com esse mecanismo, ela consegue, por exemplo, evitar a perda de água em ambientes com baixa disponibilidade. Além disso, o fechamento também evita que grande quantidade de gás carbônico fique disponível no mesofilo.

Diversos fatores ambientais também controlam os movimentos estomáticos, dentre eles, os principais são a luz, a temperatura e a concentração de dióxido de carbono.

Como os estômatos controlam as trocas gasosas e a perda de água?

Quando o estômato fecha-se, ocorre a diminuição da perda de água pelas folhas, entretanto, ao se fechar, o estômato impede a entrada do gás carbônico, o qual é fundamental para a realização da fotossíntese. Para resolver essa questão, algumas plantas realizam suas trocas gasosas durante a noite.

Como os estômatos auxiliam no controle da entrada e saída de água nas folhas?

Sabe-se que o estômato controla a entrada e a saída de gases, abrindo e fechando o ostíolo. Esse mecanismo também é importante, pois possibilita a planta evitar a perda excessiva de água. O que mantém um estômato aberto ou fechado é a pressão de turgor.

Como ocorre a perda de água nas plantas?

As plantas retiram água do solo através das raízes e perdem água pelas folhas e um dos maiores problemas de um vegetal se relaciona a disponibilidade de água e a sua perda para o ambiente. A água não entra nas raízes e sim, gastam uma energia para retirar a água do solo.

Como ocorre o funcionamento dos estômatos para o controle da transpiração?

Os estômatos também estão relacionados com a perda de água por transpiração. Estômatos são encontrados nas partes aéreas do vegetal, principalmente nas folhas. Os estômatos se abrem quando as células-guardas estão túrgidas e se fecham quando elas estão flácidas.