Which of the following use target amplification methodologies

TMA assays are currently clinically available for the quantification of PCA3 and TMPRSS2:ERG assays in postattentive digital rectal exam urine [46,47].

From: Diagnostic Molecular Pathology, 2017

Which of the following use target amplification methodologies

All of the target amplification systems share certain fundamental characteristics. They use enzyme-mediated processes, in which a single enzyme or multiple enzymes synthesize copies of target nucleic acid. In all…

References

  • 1. Arnold LJ, Jr, Hammond PW, Wiese WA, Nelson NC. 1989. Assay formats involving acridinium-ester-labeled DNA probes. Clin Chem 35:1588–1594. Google Scholar
  • 2. Tenover FC. 1988. Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin Microbiol Rev 1:82–101. Google Scholar
  • 3. Hankin RC. 1992. In situ hybridization: principles and applications. Lab Med 23:764–770. Google Scholar
  • 4. Stender H, Fiandaca M, Hyldig-Nielsen JJ, Coull J. 2002. PNA for rapid microbiology. J Microbiol Methods 48:1–17. Google Scholar
  • 5. Montague NS, Cleary TJ, Martinez OV, Procop GW. 2008. Detection of group B streptococci in Lim broth by use of group B streptococcus peptide nucleic acid fluorescent in situ hybridization and selective and nonselective agars. J Clin Microbiol 46:3470–3472. Google Scholar
  • 6. Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, Hall G, Johnson JK, Merz WG, Peltroche-Llacsahuanga H, Stender H, Venezia RA, Wilson D, Procop GW, Wu F, Fiandaca MJ. 2008. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol 46:50–55. Google Scholar
  • 7. Søgaard M, Stender H, Schønheyder HC. 2005. Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J Clin Microbiol 43:1947–1949. Google Scholar
  • 8. Matthias M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S. 2017. Evaluation of the Accelerate Pheno system for fast identification and antimicrobial susceptibility testing from positive blood culture in Gram-negative bloodstream infection. J Clin Microbiol 55:2116–2126. Google Scholar
  • 9. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491. Google Scholar
  • 10. Kricka LJ. 1999. Nucleic acid detection technologies—labels, strategies, and formats. Clin Chem 45:453–458. Google Scholar
  • 11. Kern D, Collins M, Fultz T, Detmer J, Hamren S, Peterkin JJ, Sheridan P, Urdea M, White R, Yeghiazarian T, Todd J. 1996. An enhanced-sensitivity branched-DNA assay for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 34:3196–3202. Google Scholar
  • 12. Nolte FS. 1998. Branched DNA signal amplification for direct quantitation of nucleic acid sequences in clinical specimens. Adv Clin Chem 33:201–235. Google Scholar
  • 13. Collins ML, Zayati C, Detmer JJ, Daly B, Kolberg JA, Cha TA, Irvine BD, Tucker J, Urdea MS. 1995. Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Anal Biochem 226:120–129. Google Scholar
  • 14. Piccirilli JA, Krauch T, Moroney SE, Benner SA. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343:33–37. Google Scholar
  • 15. Cope JU, Hildesheim A, Schiffman MH, Manos MM, Lörincz AT, Burk RD, Glass AG, Greer C, Buckland J, Helgesen K, Scott DR, Sherman ME, Kurman RJ, Liaw KL. 1997. Comparison of the hybrid capture tube test and PCR for detection of human papillomavirus DNA in cervical specimens. J Clin Microbiol 35:2262–2265. Google Scholar
  • 16. Lieber MR. 1997. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. BioEssays 19:233–240. Google Scholar
  • 17. Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, Kwiatkowski RW, Sander TJ, de Arruda M, Arco DA, Neri BP, Brow MAD. 1999. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 17:292–296. Google Scholar
  • 18. Ginocchio CC, Barth D, Zhang F. 2008. Comparison of the Third Wave Invader human papillomavirus (HPV) assay and the Digene HPV Hybrid Capture 2 assay for detection of high-risk HPV DNA. J Clin Microbiol 46:1641–1646. Google Scholar
  • 19. Einstein MH, Martens MG, Garcia FA, Ferris DG, Mitchell AL, Day SP, Olson MC. 2010. Clinical validation of the Cervista HPV HR and 16/18 genotyping tests for use in women with ASC-US cytology. Gynecol Oncol 118:116–122. Google Scholar
  • 20. Myers TW, Gelfand DH. 1991. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30:7661–7666. Google Scholar
  • 21. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156. Google Scholar
  • 22. Boriskin YS, Rice PS, Stabler RA, Hinds J, Al-Ghusein H, Vass K, Butcher PD. 2004. DNA microarrays for virus detection in cases of central nervous system infection. J Clin Microbiol 42:5811–5818. Google Scholar
  • 23. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. 2001. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 39:1553–1558. Google Scholar
  • 24. Kim SR, Ki CS, Lee NY. 2009. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J Virol Methods 156:111–116. Google Scholar
  • 25. Templeton KE, Scheltinga SA, Beersma MF, Kroes AC, Claas EC. 2004. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J Clin Microbiol 42:1564–1569. Google Scholar
  • 26. Mahony J, Chong S, Merante F, Yaghoubian S, Sinha T, Lisle C, Janeczko R. 2007. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay. J Clin Microbiol 45:2965–2970. Google Scholar
  • 27. Poritz MA, Blaschke AJ, Byington CL, Meyers L, Nilsson K, Jones DE, Thatcher SA, Robbins T, Lingenfelter B, Amiott E, Herbener A, Daly J, Dobrowolski SF, Teng DH, Ririe KM. 2011. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One 6:e26047. Google Scholar
  • 28. Westh H, Lisby G, Breysse F, Böddinghaus B, Chomarat M, Gant V, Goglio A, Raglio A, Schuster H, Stuber F, Wissing H, Hoeft A. 2009. Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect 15:544–551. Google Scholar
  • 29. Blaschke AJ, Heyrend C, Byington CL, Fisher MA, Barker E, Garrone NF, Thatcher SA, Pavia AT, Barney T, Alger GD, Daly JA, Ririe KM, Ota I, Poritz MA. 2012. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis 74:349–355. Google Scholar
  • 30. Wojewoda CM, Sercia L, Navas M, Tuohy M, Wilson D, Hall GS, Procop GW, Richter SS. 2013. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J Clin Microbiol 51:2072–2076. Google Scholar
  • 31. de Boer RF, Ott A, Kesztyüs B, Kooistra-Smid AM. 2010. Improved detection of five major gastrointestinal pathogens by use of a molecular screening approach. J Clin Microbiol 48:4140–4146. Google Scholar
  • 32. Coste JF, Vuiblet V, Moustapha B, Bouin A, Lavaud S, Toupance O, de Rougemont A, Benejat L, Megraud F, Wolak-Thierry A, Villena I, Chemla C, Le Magrex E, de Champs C, Andreoletti L, Rieu P, Leveque N. 2013. Microbiological diagnosis of severe diarrhea in kidney transplant recipients by use of multiplex PCR assays. J Clin Microbiol 51:1841–1849. Google Scholar
  • 33. Popowitch EB, O'Neill SS, Miller MB. 2013. Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses. J Clin Microbiol 51:1528–1533. Google Scholar
  • 34. Dunbar SA, Vander Zee CA, Oliver KG, Karem KL, Jacobson JW. 2003. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53:245–252. Google Scholar
  • 35. Diaz MR, Fell JW. 2004. High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol 42:3696–3706. Google Scholar
  • 36. Smith PL, WalkerPeach CR, Fulton RJ, DuBois DB. 1998. A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system. Clin Chem 44:2054–2056. Google Scholar
  • 37. Wallace J, Woda BA, Pihan G. 2005. Facile, comprehensive, high-throughput genotyping of human genital papillomaviruses using spectrally addressable liquid bead microarrays. J Mol Diagn 7:72–80. Google Scholar
  • 38. Mengelle C, Mansuy JM, Prere MF, Grouteau E, Claudet I, Kamar N, Huynh A, Plat G, Benard M, Marty N, Valentin A, Berry A, Izopet J. 2013. Simultaneous detection of gastrointestinal pathogens with a multiplex Luminex-based molecular assay in stool samples from diarrhoeic patients. Clin Microbiol Infect 19:E458–E465. Google Scholar
  • 39. Buss SN, Leber A, Chapin K, Fey PD, Bankowski MJ, Jones MK, Rogatcheva M, Kanack KJ, Bourzac KM. 2015. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol 53:915–925. Google Scholar
  • 40. Leber AL, Everhart K, Balada-Llasat JM, Cullison J, Daly J, Holt S, Lephart P, Salimnia H, Schreckenberger PC, DesJarlais S, Reed SL, Chapin KC, LeBlanc L, Johnson JK, Soliven NL, Carroll KC, Miller J-A, Dien Bard J, Mestas J, Bankowski M, Enomoto T, Hemmert AC, Bourzac KM. 2016. Multicenter evaluation of BioFire FilmArray Meningitis/Encephalitis Panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid. J Clin Microbiol 54:2251–2261. Google Scholar
  • 41. Altun O, Almuhayawi M, Ullberg M, Ozenci V. 2013. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol 51:4130–4136. Google Scholar
  • 42. Higuchi R, Fockler C, Dollinger G, Watson R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (New York) 11:1026–1030. Google Scholar
  • 43. Morrison TB, Weis JJ, Wittwer CT. 1998. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24:954–958, 960, 962. Google Scholar
  • 44. Ririe KM, Rasmussen RP, Wittwer CT. 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160. Google Scholar
  • 45. Holland PM, Abramson RD, Watson R, Gelfand DH. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280. Google Scholar
  • 46. Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res 6:986–994. Google Scholar
  • 47. Lay MJ, Wittwer CT. 1997. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 43:2262–2267. Google Scholar
  • 48. Tyagi S, Bratu DP, Kramer FR. 1998. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16:49–53. Google Scholar
  • 49. Thelwell N, Millington S, Solinas A, Booth J, Brown T. 2000. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28:3752–3761. Google Scholar
  • 50. Whitcombe D, Theaker J, Guy SP, Brown T, Little S. 1999. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807. Google Scholar
  • 51. Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB, Hedgpeth J. 2000. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661. Google Scholar
  • 52. Mulligan EK, Germer JJ, Arens MQ, D'Amore KL, Di Bisceglie A, Ledeboer NA, Moser MJ, Newman AC, O'Guin AK, Olivo PD, Podzorski DS, Vaughan KA, Yao JD, Elagin SA, Johnson SC. 2009. Detection and quantification of hepatitis C virus (HCV) by MultiCode-RTx real-time PCR targeting the HCV 3′ untranslated region. J Clin Microbiol 47:2635–2638. Google Scholar
  • 53. Sherrill CB, Marshall DJ, Moser MJ, Larsen CA, Daudé-Snow L, Jurczyk S, Shapiro G, Prudent JR. 2004. Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 126:4550–4556. Google Scholar
  • 54. Svarovskaia ES, Moser MJ, Bae AS, Prudent JR, Miller MD, Borroto-Esoda K. 2006. MultiCode-RTx real-time PCR system for detection of subpopulations of K65R human immunodeficiency virus type 1 reverse transcriptase mutant viruses in clinical samples. J Clin Microbiol 44:4237–4241. Google Scholar
  • 55. Luk KC, Devare SG, Hackett JR, Jr. 2007. Partially double-stranded linear DNA probes: novel design for sensitive detection of genetically polymorphic targets. J Virol Methods 144:1–11. Google Scholar
  • 56. Hackett J, Jr. 2012. Meeting the challenge of HIV diversity: strategies to mitigate the impact of HIV-1 genetic heterogeneity on performance of nucleic acid testing assays. Clin Lab 58:199–202. Google Scholar
  • 57. Kricka LJ. 2002. Stains, labels and detection strategies for nucleic acids assays. Ann Clin Biochem 39:114–129. Google Scholar
  • 58. Nolte FS, Wittwer CT. 2016. Nucleic acid amplification methods overview, p 3–18. In Persing DH, Tenover FC, Hayden RT, Ieven M, Miller MB, Nolte FS, Tang Y-W, Belkum A (ed), Molecular Microbiology: Diagnostic Principles and Practice, 3rd ed. ASM Press, Washington, DC. Google Scholar
  • 59. Dwight Z, Palais R, Wittwer CT. 2011. uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application. Bioinformatics 27:1019–1020. Google Scholar
  • 60. Vossen RH, Aten E, Roos A, den Dunnen JT. 2009. High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat 30:860–866. Google Scholar
  • 61. Kalinina O, Lebedeva I, Brown J, Silver J. 1997. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res 25:1999–2004. Google Scholar
  • 62. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. 1992. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449. Google Scholar
  • 63. Vogelstein B, Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci USA 96:9236–9241. Google Scholar
  • 64. White RA, III, Quake SR, Curr K. 2012. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods 179:45–50. Google Scholar
  • 65. Haynes RJ, Kline MC, Toman B, Scott C, Wallace P, Butler JM, Holden MJ. 2013. Standard reference material 2366 for measurement of human cytomegalovirus DNA. J Mol Diagn 15:177–185. Google Scholar
  • 66. Pholwat S, Stroup S, Foogladda S, Houpt E. 2013. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One 8:e57238. Google Scholar
  • 67. Henrich TJ, Gallien S, Li JZ, Pereyra F, Kuritzkes DR. 2012. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods 186:68–72. Google Scholar
  • 68. Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, Caliendo AM. 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol 51:540–546. Google Scholar
  • 69. Sedlak RH, Jerome KR. 2013. Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis 75:1–4. Google Scholar
  • 70. Compton J. 1991. Nucleic acid sequence-based amplification. Nature 350:91–92. Google Scholar
  • 71. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. 1990. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87:1874–1878. Google Scholar
  • 72. Kwoh DY, Davis GR, Whitfield KM, Chappelle HL, DiMichele LJ, Gingeras TR. 1989. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA 86:1173–1177. Google Scholar
  • 73. Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD. 1998. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 26:2150–2155. Google Scholar
  • 74. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. 1992. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696. Google Scholar
  • 75. Little MC, et al. 1999. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem 45:777–784. Google Scholar
  • 76. Nycz CM, Dean CH, Haaland PD, Spargo CA, Walker GT. 1998. Quantitative reverse transcription strand displacement amplification: quantitation of nucleic acids using an isothermal amplification technique. Anal Biochem 259:226–234. Google Scholar
  • 77. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63. Google Scholar
  • 78. Tomita N, Mori Y, Kanda H, Notomi T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882. Google Scholar
  • 79. Ihira M, Yoshikawa T, Enomoto Y, Akimoto S, Ohashi M, Suga S, Nishimura N, Ozaki T, Nishiyama Y, Notomi T, Ohta Y, Asano Y. 2004. Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop-mediated isothermal amplification. J Clin Microbiol 42:140–145. Google Scholar
  • 80. Okamoto S, Yoshikawa T, Ihira M, Suzuki K, Shimokata K, Nishiyama Y, Asano Y. 2004. Rapid detection of varicella-zoster virus infection by a loop-mediated isothermal amplification method. J Med Virol 74:677–682. Google Scholar
  • 81. Hong TC, Mai QL, Cuong DV, Parida M, Minekawa H, Notomi T, Hasebe F, Morita K. 2004. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol 42:1956–1961. Google Scholar
  • 82. Yoda T, Suzuki Y, Yamazaki K, Sakon N, Kanki M, Aoyama I, Tsukamoto T. 2007. Evaluation and application of reverse transcription loop-mediated isothermal amplification for detection of noroviruses. J Med Virol 79:326–334. Google Scholar
  • 83. Iwamoto T, Sonobe T, Hayashi K. 2003. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41:2616–2622. Google Scholar
  • 84. Le Roux CA, Kubo T, Grobbelaar AA, van Vuren PJ, Weyer J, Nel LH, Swanepoel R, Morita K, Paweska JT. 2009. Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid detection of Rift Valley fever virus in clinical specimens. J Clin Microbiol 47:645–651. Google Scholar
  • 85. Pancholi P, Kelly C, Raczkowski M, Balada-Llasat JM. 2012. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J Clin Microbiol 50:1331–1335. Google Scholar
  • 86. Vincent M, Xu Y, Kong H. 2004. Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800. Google Scholar
  • 87. Tong Y, Tang W, Kim HJ, Pan X, Ranalli T, Kong H. 2008. Development of isothermal TaqMan assays for detection of biothreat organisms. Biotechniques 45:543–557. Google Scholar
  • 88. Chow WHA, McCloskey C, Tong Y, Hu L, You Q, Kelly CP, Kong H, Tang YW, Tang W. 2008. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn 10:452–458. Google Scholar
  • 89. Goldmeyer J, Li H, McCormac M, Cook S, Stratton C, Lemieux B, Kong H, Tang W, Tang YW. 2008. Identification of Staphylococcus aureus and determination of methicillin resistance directly from positive blood cultures by isothermal amplification and a disposable detection device. J Clin Microbiol 46:1534–1536. Google Scholar
  • 90. Tang W, Chow WHA, Li Y, Kong H, Tang YW, Lemieux B. 2010. Nucleic acid assay system for tier II laboratories and moderately complex clinics to detect HIV in low-resource settings. J Infect Dis 201(Suppl 1):S46–S51. Google Scholar
  • 91. Nie S, Roth RB, Stiles J, Mikhlina A, Lu X, Tang YW, Babady NE. 2014. Evaluation of Alere i Influenza A&B for rapid detection of influenza viruses A and B. J Clin Microbiol 52:3339–3344. Google Scholar
  • 92. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770. Google Scholar
  • 93. Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T. 1993. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37:2054–2058. Google Scholar
  • 94. Garcia EP, Dowding LA, Stanton LW, Slepnev VI. 2005. Scalable transcriptional analysis routine—multiplexed quantitative real-time polymerase chain reaction platform for gene expression analysis and molecular diagnostics. J Mol Diagn 7:444–454. Google Scholar
  • 95. Hlousek L, Voronov S, Diankov V, Leblang AB, Wells PJ, Ford DM, Nolling J, Hart KW, Espinoza PA, Bristol MR, Tsongalis GJ, Yen-Lieberman B, Slepnev VI, Kong LI, Lee MC. 2012. Automated high multiplex qPCR platform for simultaneous detection and quantification of multiple nucleic acid targets. Biotechniques 52:316–324. Google Scholar
  • 96. Loeffelholz MJ, Lewinski CA, Silver SR, Purohit AP, Herman SA, Buonagurio DA, Dragon EA. 1992. Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. J Clin Microbiol 30:2847–2851. Google Scholar
  • 97. Mantero G, Zonaro A, Albertini A, Bertolo P, Primi D. 1991. DNA enzyme immunoassay: general method for detecting products of polymerase chain reaction. Clin Chem 37:422–429. Google Scholar
  • 98. Poljak M, Seme K. 1996. Rapid detection and typing of human papillomaviruses by consensus polymerase chain reaction and enzyme-linked immunosorbent assay. J Virol Methods 56:231–238. Google Scholar
  • 99. Rossau R, Traore H, De Beenhouwer H, Mijs W, Jannes G, De Rijk P, Portaels F. 1997. Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 41:2093–2098. Google Scholar
  • 100. Stuyver L, Wyseur A, Rombout A, Louwagie J, Scarcez T, Verhofstede C, Rimland D, Schinazi RF, Rossau R. 1997. Line probe assay for rapid detection of drug-selected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene. Antimicrob Agents Chemother 41:284–291. Google Scholar
  • 101. Stuyver L, Wyseur A, van Arnhem W, Hernandez F, Maertens G. 1996. Second-generation line probe assay for hepatitis C virus genotyping. J Clin Microbiol 34:2259–2266. Google Scholar
  • 102. Fontaine V, Mascaux C, Weyn C, Bernis A, Celio N, Lefèvre P, Kaufman L, Garbar C. 2007. Evaluation of combined general primer-mediated PCR sequencing and type-specific PCR strategies for determination of human papillomavirus genotypes in cervical cell specimens. J Clin Microbiol 45:928–934. Google Scholar
  • 103. Osiowy C, Giles E. 2003. Evaluation of the INNO-LiPA HBV genotyping assay for determination of hepatitis B virus genotype. J Clin Microbiol 41:5473–5477. Google Scholar
  • 104. Tortoli E, Nanetti A, Piersimoni C, Cichero P, Farina C, Mucignat G, Scarparo C, Bartolini L, Valentini R, Nista D, Gesu G, Tosi CP, Crovatto M, Brusarosco G. 2001. Performance assessment of new multiplex probe assay for identification of mycobacteria. J Clin Microbiol 39:1079–1084. Google Scholar
  • 105. Steinau M, Swan DC, Unger ER. 2008. Type-specific reproducibility of the Roche linear array HPV genotyping test. J Clin Virol 42:412–414. Google Scholar
  • 106. Innis MA, Myambo KB, Gelfand DH, Brow MA. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA 85:9436–9440. Google Scholar
  • 107. Felmlee TA, Oda RP, Persing DA, Landers JP. 1995. Capillary electrophoresis of DNA potential utility for clinical diagnoses. J Chromatogr A 717:127–137. Google Scholar
  • 108. Diggle MA, Clarke SC. 2004. Pyrosequencing: sequence typing at the speed of light. Mol Biotechnol 28:129–137. Google Scholar
  • 109. Arnold C, Westland L, Mowat G, Underwood A, Magee J, Gharbia S. 2005. Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clin Microbiol Infect 11:122–130. Google Scholar
  • 110. Gharizadeh B, Norberg E, Löffler J, Jalal S, Tollemar J, Einsele H, Klingspor L, Nyrén P. 2004. Identification of medically important fungi by the pyrosequencing technology. Mycoses 47:29–33. Google Scholar
  • 111. Haanperä M, Huovinen P, Jalava J. 2005. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother 49:457–460. Google Scholar
  • 112. O'Meara D, Wilbe K, Leitner T, Hejdeman B, Albert J, Lundeberg J. 2001. Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing. J Clin Microbiol 39:464–473. Google Scholar
  • 113. ten Bosch JR, Grody WW. 2008. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn 10:484–492. Google Scholar
  • 114. Metzker ML. 2010. Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. Google Scholar
  • 115. Clinical and Laboratory Standards Institute. 2013. Nucleic acid sequencing methods in diagnostic laboratory medicine. Approved guideline, 2nd ed. CLSI document MM9-A2. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 116. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352. Google Scholar
  • 117. Simen BB, Simons JF, Hullsiek KH, Novak RM, Macarthur RD, Baxter JD, Huang C, Lubeski C, Turenchalk GS, Braverman MS, Desany B, Rothberg JM, Egholm M, Kozal MJ, Terry Beirn Community Programs for Clinical Research on AIDS. 2009. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J Infect Dis 199:693–701. Google Scholar
  • 118. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW. 2007. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17:1195–1201. Google Scholar
  • 119. Newman RM, Kuntzen T, Weiner B, Berical A, Charlebois P, Kuiken C, Murphy DG, Simmonds P, Bennett P, Lennon NJ, Birren BW, Zody MC, Allen TM, Henn MR. 2013. Whole genome pyrosequencing of rare hepatitis C virus genotypes enhances subtype classification and identification of naturally occurring drug resistance variants. J Infect Dis 208:17–31. Google Scholar
  • 120. Miller MB, Tang YW. 2009. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633. Google Scholar
  • 121. Clinical and Laboratory Standards Institute. 2013. Microarrays for diagnosis and monitoring of infectious diseases; proposed guideline. CLSI document MM22-P. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 122. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA 91:5022–5026. Google Scholar
  • 123. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. 1996. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 93:10614–10619. Google Scholar
  • 124. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G. 1999. Making and reading microarrays. Nat Genet 21(Suppl):15–19. Google Scholar
  • 125. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL. 2002. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 99:15687–15692. Google Scholar
  • 126. Chiu CY, Urisman A, Greenhow TL, Rouskin S, Yagi S, Schnurr D, Wright C, Drew WL, Wang D, Weintrub PS, Derisi JL, Ganem D. 2008. Utility of DNA microarrays for detection of viruses in acute respiratory tract infections in children. J Pediatr 153:76–83.e1. Google Scholar
  • 127. Wang D, Urisman A, Liu YT, Springer M, Ksiazek TG, Erdman DD, Mardis ER, Hickenbotham M, Magrini V, Eldred J, Latreille JP, Wilson RK, Ganem D, DeRisi JL. 2003. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 1:e2. Google Scholar
  • 128. Korimbocus J, Scaramozzino N, Lacroix B, Crance JM, Garin D, Vernet G. 2005. DNA probe array for the simultaneous identification of herpesviruses, enteroviruses, and flaviviruses. J Clin Microbiol 43:3779–3787. Google Scholar
  • 129. Lin B, Wang Z, Vora GJ, Thornton JA, Schnur JM, Thach DC, Blaney KM, Ligler AG, Malanoski AP, Santiago J, Walter EA, Agan BK, Metzgar D, Seto D, Daum LT, Kruzelock R, Rowley RK, Hanson EH, Tibbetts C, Stenger DA. 2006. Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays. Genome Res 16:527–535. Google Scholar
  • 130. Palacios G, Quan PL, Jabado OJ, Conlan S, Hirschberg DL, Liu Y, Zhai J, Renwick N, Hui J, Hegyi H, Grolla A, Strong JE, Towner JS, Geisbert TW, Jahrling PB, Büchen-Osmond C, Ellerbrok H, Sanchez-Seco MP, Lussier Y, Formenty P, Nichol MS, Feldmann H, Briese T, Lipkin WI. 2007. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 13:73–81. Google Scholar
  • 131. Wong CW, Heng CL, Wan Yee L, Soh SW, Kartasasmita CB, Simoes EA, Hibberd ML, Sung WK, Miller LD. 2007. Optimization and clinical validation of a pathogen detection microarray. Genome Biol 8:R93. Google Scholar
  • 132. Raymond F, Carbonneau J, Boucher N, Robitaille L, Boisvert S, Wu WK, De Serres G, Boivin G, Corbeil J. 2009. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children. J Clin Microbiol 47:743–750. Google Scholar
  • 133. Jannetto PJ, Buchan BW, Vaughan KA, Ledford JS, Anderson DK, Henley DC, Quigley NB, Ledeboer NA. 2010. Real-time detection of influenza A, influenza B, and respiratory syncytial virus A and B in respiratory specimens by use of nanoparticle probes. J Clin Microbiol 48:3997–4002. Google Scholar
  • 134. Samuel LP, Tibbetts RJ, Agotesku A, Fey M, Hensley R, Meier FA. 2013. Evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures. J Clin Microbiol 51:1188–1192. Google Scholar
  • 135. Liu RH, Coty WA, Reed M, Gust G. 2008. Electrochemical detection-based DNA microarrays. IVD Technol 14:31–38. Google Scholar
  • 136. Pierce VM, Hodinka RL. 2012. Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children. J Clin Microbiol 50:3458–3465. Google Scholar
  • 137. Nijhuis RHT, Guerendiain D, Claas ECJ, Templeton KE. 2017. Comparison of ePlex respiratory pathogen panel with laboratory-developed real-time PCR assays for detection of respiratory pathogens. J Clin Microbiol 55:1938–1945. Google Scholar
  • 138. Lavigne JP, Espinal P, Dunyach-Remy C, Messad N, Pantel A, Sotto A. 2013. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med 51:257–270. Google Scholar
  • 139. Ganova-Raeva LM, Khudyakov YE. 2013. Application of mass spectrometry to molecular diagnostics of viral infections. Expert Rev Mol Diagn 13:377–388. Google Scholar
  • 140. Ecker D, Drader JJ, Gutierrez J, Gutierrez A, Hannis JC, Schink A, Sampath R, Blyn LB, Eshoo MW, Hall TA, Tobarmosquera M, Jiang Y, Sannes-Lowery KA, Cummins LL, Libby B, Walcott DJ, Massire C, Ranken R, Manalili S, Ivy C, Melton R, Levene H, Harpin V, Li F, White N, Pear M, Ecker JA, Samant V, Knize D, Robbins D, Rudnick K, Hajjar F, Hofstadler SA. 2006. The Ibis T5000 Universal Biosensor: an automated platform for pathogen identification and strain typing. J Assoc Lab Autom 11:341–351. Google Scholar
  • 141. Metzgar D, Frinder MW, Rothman RE, Peterson S, Carroll KC, Zhang SX, Avornu GD, Rounds MA, Carolan HE, Toleno DM, Moore D, Hall TA, Massire C, Richmond GS, Gutierrez JR, Sampath R, Ecker DJ, Blyn LB. 2016. The IRIDICA BAC BSI assay: rapid, sensitive and culture-independent identification of bacteria and Candida in blood. PLoS One 11:e0158186. Google Scholar
  • 142. Özenci V, Patel R, Ullberg M, Strålin K. 2018. Demise of polymerase chain reaction/electrospray ionization-mass spectrometry as an infectious diseases diagnostic tool. Clin Infect Dis 66:452–455. Google Scholar
  • 143. Honisch C, Chen Y, Mortimer C, Arnold C, Schmidt O, van den Boom D, Cantor CR, Shah HN, Gharbia SE. 2007. Automated comparative sequence analysis by base-specific cleavage and mass spectrometry for nucleic acid-based microbial typing. Proc Natl Acad Sci USA 104:10649–10654. Google Scholar
  • 144. Lefmann M, Honisch C, Böcker S, Storm N, von Wintzingerode F, Schlötelburg C, Moter A, van den Boom D, Göbel UB. 2004. Novel mass spectrometry-based tool for genotypic identification of mycobacteria. J Clin Microbiol 42:339–346. Google Scholar
  • 145. Liu J, Lim SL, Ruan Y, Ling AE, Ng LF, Drosten C, Liu ET, Stanton LW, Hibberd ML. 2005. SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoS Med 2:e43. Google Scholar
  • 146. Söderlund-Strand A, Dillner J, Carlson J. 2008. High-throughput genotyping of oncogenic human papilloma viruses with MALDI-TOF mass spectrometry. Clin Chem 54:86–92. Google Scholar
  • 147. Stürenburg E, Storm N, Sobottka I, Horstkotte MA, Scherpe S, Aepfelbacher M, Müller S. 2006. Detection and genotyping of SHV β-lactamase variants by mass spectrometry after base-specific cleavage of in vitro-generated RNA transcripts. J Clin Microbiol 44:909–915. Google Scholar
  • 148. Syrmis MW, Moser RJ, Whiley DM, Vaska V, Coombs GW, Nissen MD, Sloots TP, Nimmo GR. 2011. Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 17:1804–1810. Google Scholar
  • 149. Clementi M, Menzo S, Bagnarelli P, Manzin A, Valenza A, Varaldo PE. 1993. Quantitative PCR and RT-PCR in virology. PCR Methods Appl 2:191–196. Google Scholar
  • 150. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011. Google Scholar
  • 151. Clinical and Laboratory Standards Institute. 2010. Quantitative molecular method for infectious diseases. Approved guideline, 2nd ed. CLSI document MM6-A2. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 152. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA. 2013. The digital MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin Chem 59:892–902. Google Scholar
  • 153. Barbeau JM, Goforth J, Caliendo AM, Nolte FS. 2004. Performance characteristics of a quantitative TaqMan hepatitis C virus RNA analyte-specific reagent. J Clin Microbiol 42:3739–3746. Google Scholar
  • 154. Nolte FS, Gauld L, Barrett SB. 2016. Direct comparison of Alere i and cobas Liat influenza A and B tests for rapid detection of influenza virus infection. J Clin Microbiol 54:2763–2766. Google Scholar
  • 155. Mitchell PS, Germer JJ, Yao JDC. 2011. Laboratory design and operations, p 127–141. In Persing D, Tenover F, Haden R, Nolte FS, Tang YW, van Belkum A (ed), Molecular Microbiology: Diagnostic Principles and Practice, 2nd ed. ASM Press, Washington, DC. Google Scholar
  • 156. Persing DH, Tenover FC, Hayden R, Ieven M, Miller MB, Nolte FS, Tang Y-W, van Belkum A (ed). 2016. Molecular Microbiology: Diagnostic Principles and Practice, 3rd ed. ASM Press, Washington, DC. Google Scholar
  • 157. Peterson LR, Robicsek A. 2009. Does my patient have Clostridium difficile infection? Ann Intern Med 151:176–179. Google Scholar
  • 158. Centers for Disease Control and Prevention (CDC). 2013. Detection of acute HIV infection in two evaluations of a new HIV diagnostic testing algorithm—United States, 2011–2013. MMWR Morb Mortal Wkly Rep 62:489–494. Google Scholar
  • 159. Centers for Disease Control and Prevention (CDC). 2013. Testing for HCV infection: an update of guidance for clinicians and laboratorians. MMWR Morb Mortal Wkly Rep 62:362–365. Google Scholar
  • 160. Smith BD, Morgan RL, Beckett GA, Falck-Ytter Y, Holtzman D, Ward JW. 2012. Hepatitis C virus testing of persons born during 1945-1965: recommendations from the Centers for Disease Control and Prevention. Ann Intern Med 157:817–822. Google Scholar
  • 161. Bissonnette L, Bergeron MG. 2012. Multiparametric technologies for the diagnosis of syndromic infections. Clin Microbiol Newsl 34:159–168. Google Scholar
  • 162. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362. Google Scholar
  • 163. Relman DA, Schmidt TM, MacDermott RP, Falkow S. 1992. Identification of the uncultured bacillus of Whipple's disease. N Engl J Med 327:293–301. Google Scholar
  • 164. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966. Google Scholar
  • 165. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS Study Group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325. Google Scholar
  • 166. Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G, Brennan DC, Storch GA, Sloots TP, Wang D. 2007. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3:e64. Google Scholar
  • 167. Le BM, Demertzis LM, Wu G, Tibbits RJ, Buller R, Arens MQ, Gaynor AM, Storch GA, Wang D. 2007. Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis 13:1936–1938. Google Scholar
  • 168. Relman DA. 2011. Microbial genomics and infectious diseases. N Engl J Med 365:347–357. Google Scholar
  • 169. Woese CR. 1987. Bacterial evolution. Microbiol Rev 51:221–271. Google Scholar
  • 170. Kurtzman CP, Robnett CJ. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223. Google Scholar
  • 171. Tang YW, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH. 1998. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 36:3674–3679. Google Scholar
  • 172. Hall L, Wohlfiel S, Roberts GD. 2003. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of commonly encountered, clinically important yeast species. J Clin Microbiol 41:5099–5102. Google Scholar
  • 173. Hall L, Wohlfiel S, Roberts GD. 2004. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol 42:622–626. Google Scholar
  • 174. Procop GW. 2007. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin Infect Dis 45(Suppl 2):S99–S111. Google Scholar
  • 175. Tuohy MJ, Hall GS, Sholtis M, Procop GW. 2005. Pyrosequencing as a tool for the identification of common isolates of Mycobacterium sp. Diagn Microbiol Infect Dis 51:245–250. Google Scholar
  • 176. Clinical and Laboratory Standards Institute. 2008. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; approved guideline. CLSI document MM18-A. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 177. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. 2012. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13:47–58. Google Scholar
  • 178. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA. 1996. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272:1167–1170. Google Scholar
  • 179. Walsh EE, McConnochie KM, Long CE, Hall CB. 1997. Severity of respiratory syncytial virus infection is related to virus strain. J Infect Dis 175:814–820. Google Scholar
  • 180. Reid R, Greenberg M, Jenson AB, Husain M, Willett J, Daoud Y, Temple G, Stanhope CR, Sherman AI, Phibbs GD, Lorincz AT. 1987. Sexually transmitted papillomaviral infections. I. The anatomic distribution and pathologic grade of neoplastic lesions associated with different viral types. Am J Obstet Gynecol 156:212–222. Google Scholar
  • 181. Solomon D, Schiffman M, Tarone R, ALTS Study Group. 2001. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: baseline results from a randomized trial. J Natl Cancer Inst 93:293–299. Google Scholar
  • 182. Wright TC, Jr, Schiffman M, Solomon D, Cox JT, Garcia F, Goldie S, Hatch K, Noller KL, Roach N, Runowicz C, Saslow D. 2004. Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cervical cytology for screening. Obstet Gynecol 103:304–309. Google Scholar
  • 183. Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, Garcia FAR, Moriarty AT, Waxman AG, Wilbur DC, Wentzensen N, Downs LS, Jr, Spitzer M, Moscicki AB, Franco EL, Stoler MH, Schiffman M, Castle PE, Myers ER, ACS-ASCCP-ASCP Cervical Cancer Guideline Committee. 2012. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin 62:147–172. Google Scholar
  • 184. Emery VC, Sabin CA, Cope AV, Gor D, Hassan-Walker AF, Griffiths PD. 2000. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet 355:2032–2036. Google Scholar
  • 185. Humar A, Gregson D, Caliendo AM, McGeer A, Malkan G, Krajden M, Corey P, Greig P, Walmsley S, Levy G, Mazzulli T. 1999. Clinical utility of quantitative cytomegalovirus viral load determination for predicting cytomegalovirus disease in liver transplant recipients. Transplantation 68:1305–1311. Google Scholar
  • 186. Tenover FC, Rasheed JK. 2011. Detection of antimicrobial resistance genes and mutations associated with antimicrobial resistance in microorganism, p 507–524. In Persing DH, Tenover FC, Hayden R, Nolte FS, Tang YW, van Belkum A (ed), Molecular Microbiology: Diagnostic Principles and Practice, 2nd ed. ASM Press, Washington, DC. Google Scholar
  • 187. Cole JM, Schuetz AN, Hill CE, Nolte FS. 2009. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol 47:322–326. Google Scholar
  • 188. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Gonçales FL, Jr, Häussinger D, Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J. 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347:975–982. Google Scholar
  • 189. Zeuzem S, Rizzetto M, Ferenci P, Shiffman ML. 2009. Management of hepatitis C virus genotype 2 or 3 infection: treatment optimization on the basis of virological response. Antivir Ther 14:143–154. Google Scholar
  • 190. Dienstag JL, McHutchison JG. 2006. American Gastroenterological Association medical position statement on the management of hepatitis C. Gastroenterology 130:225–230. Google Scholar
  • 191. Wilson EM, Rosenthal ES, Kattakuzhy S, Tang L, Kottilil S. 2017. Clinical laboratory testing in the era of directly acting antiviral therapies for hepatitis C. Clin Microbiol Rev 30:23–42. Google Scholar
  • 192. Liang TJ, Ghany MG. 2013. Current and future therapies for hepatitis C virus infection. N Engl J Med 368:1907–1917. Google Scholar
  • 193. AASLD-IDSA Panel on HCV Guidance. 2016. Monitoring patients who are starting hepatitis C treatment, are on treatment, or have completed therapy. Recommendations for testing, managing, and treating hepatitis C. AASLD-IDSA, Alexandria, VA. http:/hcvguidelines.org/full-report/monitoring-patients-who-are-starting-hepatitis-c-treatment-are-treatment-or-have. Google Scholar
  • 194. Günthard HF, Saag MS, Benson CA, del Rio C, Eron JJ, Gallant JE, Hoy JF, Mugavero MJ, Sax PE, Thompson MA, Gandhi RT, Landovitz RJ, Smith DM, Jacobsen DM, Volberding PA. 2016. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society—USA Panel. JAMA 316:191–210. Google Scholar
  • 195. Lim SG, Ng TM, Kung N, Krastev Z, Volfova M, Husa P, Lee SS, Chan S, Shiffman ML, Washington MK, Rigney A, Anderson J, Mondou E, Snow A, Sorbel J, Guan R, Rousseau F, Emtricitabine FTCB-301 Study Group. 2006. A double-blind placebo-controlled study of emtricitabine in chronic hepatitis B. Arch Intern Med 166:49–56. Google Scholar
  • 196. Hirsch HH, Brennan DC, Drachenberg CB, Ginevri F, Gordon J, Limaye AP, Mihatsch MJ, Nickeleit V, Ramos E, Randhawa P, Shapiro R, Steiger J, Suthanthiran M, Trofe J. 2005. Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation 79:1277–1286. Google Scholar
  • 197. Caliendo AM, St George K, Kao SY, Allega J, Tan BH, LaFontaine R, Bui L, Rinaldo CR. 2000. Comparison of quantitative cytomegalovirus (CMV) PCR in plasma and CMV antigenemia assay: clinical utility of the prototype AMPLICOR CMV MONITOR test in transplant recipients. J Clin Microbiol 38:2122–2127. Google Scholar
  • 198. Clinical and Laboratory Standards Institute. 2014. Molecular diagnostic methods for infectious diseases; draft report. CLSI document MM03-R (final draft). Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 199. Clinical and Laboratory Standards Institute. 2010. Quantitative molecular methods for infectious diseases; approved guideline, 2nd ed. CLSI document MM6-A2. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 200. Clinical and Laboratory Standards Institute. 2006. Collection, transport, preparation, and storage of specimens and samples for molecular methods; approved guideline. CLSI document MM13-A. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 201. Clinical and Laboratory Standards Institute. 2011. Establishing molecular testing in clinical laboratory environments; approved guideline. CLSI document MM19-A. Clinical and Laboratory Standards Institute, Wayne, PA. Google Scholar
  • 202. Saag MS, Holodniy M, Kuritzkes DR, O'Brien WA, Coombs R, Poscher ME, Jacobsen DM, Shaw GM, Richman DD, Volberding PA. 1996. HIV viral load markers in clinical practice. Nat Med 2:625–629. Google Scholar
  • 203. Gaydos CA, Crotchfelt KA, Howell MR, Kralian S, Hauptman P, Quinn TC. 1998. Molecular amplification assays to detect chlamydial infections in urine specimens from high school female students and to monitor the persistence of chlamydial DNA after therapy. J Infect Dis 177:417–424. Google Scholar
  • 204. Lee HH, Burczak JD, Muldoon S, Leckie G, Chernesky MA, Schachter J, Andrews WW, Stamm WE. 1995. Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 345:213–216. Google Scholar
  • 205. Blin N, Stafford DW. 1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303–2308. Google Scholar
  • 206. Gross-Bellard M, Oudet P, Chambon P. 1973. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem 36:32–38. Google Scholar
  • 207. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. Google Scholar
  • 208. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503. Google Scholar
  • 209. Mitchell PS, Espy MJ, Smith TF, Toal DR, Rys PN, Berbari EF, Osmon DR, Persing DH. 1997. Laboratory diagnosis of central nervous system infections with herpes simplex virus by PCR performed with cerebrospinal fluid specimens. J Clin Microbiol 35:2873–2877. Google Scholar
  • 210. Rosenstraus M, Wang Z, Chang SY, DeBonville D, Spadoro JP. 1998. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol 36:191–197. Google Scholar
  • 211. Beutler E, Gelbart T, Kuhl W. 1990. Interference of heparin with the polymerase chain reaction. Biotechniques 9:166. Google Scholar
  • 212. Higuchi R. 1989. Simple and Rapid Preparation of Samples for PCR. Stockton Press, New York, NY. Google Scholar
  • 213. Furukawa K, Bhavanandan VP. 1983. Influences of anionic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase alpha: correlation of observed effects with properties of the polysaccharides. Biochim Biophys Acta 740:466–475. Google Scholar
  • 214. Longo MC, Berninger MS, Hartley JL. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93:125–128. Google Scholar
  • 215. Pang J, Modlin J, Yolken R. 1992. Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Mol Cell Probes 6:251–256. Google Scholar
  • 216. Thornton CG, Hartley JL, Rashtchian A. 1992. Utilizing uracil DNA glycosylase to control carryover contamination in PCR: characterization of residual UDG activity following thermal cycling. Biotechniques 13:180–184. Google Scholar
  • 217. Espy MJ, Smith TF, Persing DH. 1993. Dependence of polymerase chain reaction product inactivation protocols on amplicon length and sequence composition. J Clin Microbiol 31:2361–2365. Google Scholar
  • 218. Burd EM. 2010. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 23:550–576. Google Scholar
  • 219. Schachter J, Stamm WE, Quinn TC, Andrews WW, Burczak JD, Lee HH. 1994. Ligase chain reaction to detect Chlamydia trachomatis infection of the cervix. J Clin Microbiol 32:2540–2543. Google Scholar
  • 220. Pang XL, Fox JD, Fenton JM, Miller GG, Caliendo AM, Preiksaitis JK, American Society of Transplantation Infectious Diseases Community of Practice, Canadian Society of Transplantation. 2009. Interlaboratory comparison of cytomegalovirus viral load assays. Am J Transplant 9:258–268. Google Scholar
  • 221. Farrell DJ. 1999. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. J Clin Microbiol 37:386–390. Google Scholar
  • 222. Lakeman FD, Whitley RJ, National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. 1995. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. J Infect Dis 171:857–863. Google Scholar
  • 223. Gerna G, Zipeto D, Parea M, Revello MG, Silini E, Percivalle E, Zavattoni M, Grossi P, Milanesi G. 1991. Monitoring of human cytomegalovirus infections and ganciclovir treatment in heart transplant recipients by determination of viremia, antigenemia, and DNAemia. J Infect Dis 164:488–498. Google Scholar
  • 224. Nolte FS, Emmens RK, Thurmond C, Mitchell PS, Pascuzzi C, Devine SM, Saral R, Wingard JR. 1995. Early detection of human cytomegalovirus viremia in bone marrow transplant recipients by DNA amplification. J Clin Microbiol 33:1263–1266. Google Scholar
  • 225. Klugman KP, Madhi SA, Albrich WC. 2008. Novel approaches to the identification of Streptococcus pneumoniae as the cause of community-acquired pneumonia. Clin Infect Dis 47(Suppl 3):S202–S206. Google Scholar
  • 226. Halfon P, Bourlière M, Halimi G, Khiri H, Bertezene P, Portal I, Botta-Fridlund D, Gauthier AP, Jullien M, Feryn JM, Gerolami V, Cartouzou G. 1998. Assessment of spontaneous fluctuations of viral load in untreated patients with chronic hepatitis C by two standardized quantitation methods: branched DNA and Amplicor Monitor. J Clin Microbiol 36:2073–2075. Google Scholar
  • 227. Office of the Federal Register. 2004. Code of Federal Regulations. Clinical Laboratory Improvement Act Regulations, part 493, subpart K, section 1253. U.S. Government Printing Office and Office of the Federal Register, Washington, DC. https://wwwn.cdc.gov/clia/Regulatory/default.aspx. Google Scholar
  • 228. American Medical Association. 2017. CPT 2017, Current Procedural Terminology. AMA Press, Chicago, IL. Google Scholar
  • 229. Niemz A, Ferguson TM, Boyle DS. 2011. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250. Google Scholar
  • 230. Wolk D, Mitchell S, Patel R. 2001. Principles of molecular microbiology testing methods. Infect Dis Clin North Am 15:1157–1204. Google Scholar
  • 231. Lyon E, Wittwer CT. 2009. LightCycler technology in molecular diagnostics. J Mol Diagn 11:93–101. Google Scholar