When a virus infects a cell, some of the viral proteins are broken down into peptide fragments.

  1. d'Herelle, F. The Bacteriophage and its Behavior (Williams and Wilkins, Baltimore, USA, 1926).

    Google Scholar 

  2. Sieczkarski, S. B. & Whittaker, G. R. Dissecting virus entry via endocytosis. J. Gen. Virol. 83, 1535–1545 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Dimitrov, D. S. Cell biology of virus entry. Cell 101, 697–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rawat, S. S. et al. Modulation of entry of enveloped viruses by cholesterol and sphingolipids. Mol. Membr. Biol. 20, 243–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Takeda, M., Leser, G. P., Russell, C. J. & Lamb, R. A. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl Acad. Sci. USA 100, 14610–14617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waarts, B. L., Bittman, R. & Wilschut, J. Sphingolipid and cholesterol dependence of α-virus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J. Biol. Chem. 277, 38141–38147 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kielian, M., Chatterjee, P. K., Gibbons, D. L. & Lu, Y. E. Specific roles for lipids in virus fusion and exit. Examples from the α-viruses. Subcell. Biochem. 34, 409–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Bomsel, M. & Alfsen, A. Entry of viruses through the epithelial barrier: pathogenic trickery. Nature Rev. Mol. Cell Biol. 4, 57–68 (2003).

    Article  CAS  Google Scholar 

  11. Seisenberger, G. et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929–1932 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lowy, R. J., Sarkar, D. P., Chen, Y. & Blumenthal, R. Observation of single influenza virus-cell fusion and measurement by fluorescence video microscopy. Proc. Natl Acad. Sci. USA 87, 1850–1854 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lakadamyali, M., Rust, M. J., Babcock, H. P. & Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280–9285 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dimitrov, D. S., Willey, R., Martin, M. & Blumenthal, R. Kinetics of HIV-1 interactions with sCD4 and CD4+ cells: implications for inhibition of virus infection and initial steps of virus entry into cells. Virology 187, 398–406 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Dimitrov, D. S. et al. Quantitation of HIV-1 infection kinetics. J. Virol. 67, 2182–2190 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. White, J., Kartenbeck, J. & Helenius, A. Fusion of Semliki forest virus with the plasma membrane can be induced by low pH. J. Cell. Biol. 87, 264–272 (1980). Shows that a low pH can trigger rapid and efficient fusion of SFV with plasma membranes, which leads to delivery of the viral genome in a form that is suitable for replication.

    Article  CAS  PubMed  Google Scholar 

  17. Carr, C. M., Chaudhry, C. & Kim, P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc. Natl Acad. Sci. USA 94, 14306–14313 (1997). Proposes that the native structure of HA is trapped in a metastable state and that the fusogenic conformation is released by destabilization of the native structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hogle, J. M. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56, 677–702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stubbs, M. T. Anthrax X-rayed: new opportunities for biodefence. Trends Pharmacol. Sci. 23, 539–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  21. Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229, 1358–1365 (1985). References 21 and 22 describe the first crystal structures of human viruses with important implications for understanding their mechanisms of entry and design of inhibitors.

    Article  CAS  PubMed  Google Scholar 

  23. Mancini, E. J., Clarke, M., Gowen, B. E., Rutten, T. & Fuller, S. D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol. Cell 5, 255–266 (2000). The crystal structure of an enveloped virus to the highest resolution that has been achieved so far (9 Å), with implications for the complex structural rearrangements during entry.

    Article  CAS  PubMed  Google Scholar 

  24. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chappell, J. D., Prota, A. E., Dermody, T. S. & Stehle, T. Crystal structure of reovirus attachment protein σ1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 21, 1–11 (2002). Structural analysis reveals evolutionary relationships between two unrelated virus families.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981). The first, and still the most informative structure of an entry envelope glycoprotein — the influenza HA.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, L. et al. The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9, 255–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298 (1995). The first structure of a class II fusion protein that reveals an entirely unexpected configuration that is dramatically different from the structure of class I fusion proteins.

    Article  CAS  PubMed  Google Scholar 

  29. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001). The second structure of a class II fusion protein, which enabled the classification of these proteins as distinct from class I.

    Article  CAS  PubMed  Google Scholar 

  31. Heinz, F. X. & Allison, S. L. The machinery for flavivirus fusion with host cell membranes. Curr. Opin. Microbiol. 4, 450–455 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Colman, P. M. & Lawrence, M. C. The structural biology of type I viral membrane fusion. Nature Rev. Mol. Cell Biol. 4, 309–319 (2003).

    Article  CAS  Google Scholar 

  33. Carfi, A. et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol. Cell 8, 169–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Fass, D. et al. Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 277, 1662–1666 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Wimmer, E. (ed.) Cellular receptors for animal viruses. 1–13 (Cold Spring Harbor Laboratory Press, New York,1994).

  36. Baranowski, E., Ruiz-Jarabo, C. M. & Domingo, E. Evolution of cell recognition by viruses. Science 292, 1102–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, J. Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends Biochem. Sci. 27, 122–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998). The first crystal structure of an HIV-1 attachment protein in complex with the primary receptor CD4 and a neutralizing Fab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harouse, J. M. et al. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253, 320–323 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Fingeroth, J. D. et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl Acad. Sci. USA 81, 4510–4514 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalgleish, A. G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Klatzmann, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996). Identification of the first HIV-1 co-receptor that opened a new field with important implications for understanding entry mechanisms, and for the development of inhibitors and vaccines.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N. & Huang, E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. Entry of α-herpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618–1620 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003). Identification of the SARS-CoV receptor a few months after the discovery of the virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao, X., Chakraborti, S., Dimitrov, A. S., Gramatikoff, K. & Dimitrov, D. S. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. 312, 1159–1164 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammache, D., Yahi, N., Maresca, M., Pieroni, G. & Fantini, J. Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J. Virol. 73, 5244–5248 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Percherancier, Y. et al. HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains. J. Biol. Chem. 278, 3153–3161 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Remeta, D. P. et al. Acid-induced changes in thermal stability and fusion activity of influenza hemagglutinin. Biochemistry 41, 2044–2054 (2002). Differential scanning calorimetric measurements show that the unfolding of influenza HA at neutral pH is an endothermic process, indicating that it might not be in a metastable high-energy state.

    Article  CAS  PubMed  Google Scholar 

  52. Blumenthal, R., Clague, M. J., Durell, S. R. & Epand, R. M. Membrane fusion. Chem. Rev. 103, 53–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Barnard, R. J. & Young, J. A. α-retrovirus envelope-receptor interactions. Curr. Top. Microbiol. Immunol. 281, 107–136 (2003).

    CAS  PubMed  Google Scholar 

  54. Mothes, W., Boerger, A. L., Narayan, S., Cunningham, J. M. & Young, J. A. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103, 679–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Earp, L. J., Delos, S. E., Netter, R. C., Bates, P. & White, J. M. The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH. J. Virol. 77, 3058–3066 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eckert, D. M. & Kim, P. S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Bosch, B. J., van der Zee, R., de Haan, C. A. & Rottier, P. J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leikina, E., Ramos, C., Markovic, I., Zimmerberg, J. & Chernomordik, L. V. Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO J. 21, 5701–5710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gallo, S. A. et al. The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta 1614, 36–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Madhusoodanan, M. & Lazaridis, T. Investigation of pathways for the low-pH conformational transition in influenza hemagglutinin. Biophys. J. 84, 1926–1939 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stiasny, K., Koessl, C. & Heinz, F. X. Involvement of lipids in different steps of the flavivirus fusion mechanism. J. Virol. 77, 7856–7862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pak, C. C., Puri, A. & Blumenthal, R. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry 36, 8890–8896 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Gaudin, Y. Reversibility in fusion protein conformational changes. The intriguing case of rhabdovirus-induced membrane fusion. Subcell. Biochem. 34, 379–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Roche, S. & Gaudin, Y. Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. Virology 297, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Clague, M. J., Schoch, C., Zech, L. & Blumenthal, R. Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry 29, 1303–1308 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. & Lentz, B. R. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc. Natl Acad. Sci. USA 95, 9274–9279 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Markosyan, R. M., Cohen, F. S. & Melikyan, G. B. HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol. Biol. Cell 14, 926–938 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational changes of influenza hemagglutinin. Cell 73, 823–832 (1993). Proposes the spring-loaded mechanism for influenza and other viruses that are now known as class I fusion proteins.

    Article  CAS  PubMed  Google Scholar 

  69. Gruenke, J. A., Armstrong, R. T., Newcomb, W. W., Brown, J. C. & White, J. M. New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J. Virol. 76, 4456–4466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chernomordik, L. V., Leikina, E., Frolov, V., Bronk, P. & Zimmerberg, J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol. 136, 81–93 (1997). Finds that HA-mediated membrane fusion is consistent with the stalk hypothesis of fusion, indicating that fusion proteins begin membrane fusion by promoting the formation of a bent, lipid-containing, stalk intermediate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melikyan, G. B. & Chernomordik, L. V. Membrane rearrangements in fusion mediated by viral proteins. Trends. Microbiol. 5, 349–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Chernomordik, L., Leikina, E., Cho, M. S. & Zimmerberg, J. Control of baculovirus gp64-induced syncytium formation by membrane lipid composition (published erratum appears in J. Virol. 69, 5928). J. Virol. 69, 3049–3058 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaudin, Y., Tuffereau, C., Durrer, P., Flamand, A. & Ruigrok, R. W. Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G): G is transported in a fusion-inactive state-like conformation. J. Virol. 69, 5528–5534 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. LaBonte, J. A., Madani, N. & Sodroski, J. Cytolysis by CCR5-using human immunodeficiency virus type 1 envelope glycoproteins is dependent on membrane fusion and can be inhibited by high levels of CD4 expression. J. Virol. 77, 6645–6659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duelli, D. & Lazebnik, Y. Cell fusion: a hidden enemy? Cancer Cell 3, 445–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. De Clercq, E. New anti-HIV agents and targets. Med. Res. Rev. 22, 531–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Pollack, P. & Groothuis, J. R. Development and use of palivizumab (Synagis): a passive immunoprophylactic agent for RSV. J. Infect. Chemother. 8, 201–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kilby, J. M. & Eron, J. J. Novel therapies based on mechanisms of HIV-1 cell entry. N. Engl. J. Med. 348, 2228–2238 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sawyer, L. A. Antibodies for the prevention and treatment of viral diseases. Antiviral Res. 47, 57–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Florea, N. R., Maglio, D. & Nicolau, D. P. Pleconaril, a novel antipicornaviral agent. Pharmacother. 23, 339–348 (2003).

    Article  CAS  Google Scholar 

  81. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Kwong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Root, M. J., Kay, M. S. & Kim, P. S. Protein design of an HIV-1 entry inhibitor. Science 291, 884–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Lin, P. F. et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl Acad. Sci. USA 100, 11013–11018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arkin, M. R. et al. Binding of small molecules to an adaptive protein-protein interface. Proc. Natl Acad. Sci. USA 100, 1603–1608 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Braisted, A. C. et al. Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J. Am. Chem. Soc. 125, 3714–3715 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Dimmock, N. J. Neutralization of animal viruses. Curr. Top. Microbiol. Immunol. 183, 1–149 (1993).

    CAS  PubMed  Google Scholar 

  89. Burton, D. R. Antibodies, viruses and vaccines. Nature Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  90. Smith, T. J. Antibody interactions with rhinovirus: lessons for mechanisms of neutralization and the role of immunity in viral evolution. Curr. Top. Microbiol. Immunol. 260, 1–28 (2001).

    CAS  PubMed  Google Scholar 

  91. Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224 (1997). Evaluates the only monoclonal antibody in present use against a viral disease.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson, S. et al. A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEDI-493 and RSHZl9. J. Infect. Dis. 180, 35–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H. & Baker, T. S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383, 350–354 (1996). Shows that an antibody can penetrate a receptor-binding canyon, which indicates that it is unlikely that viral quaternary structure evolves merely to evade immune recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choe, H. et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Colman, P. M. Virus versus antibody. Structure. 5, 591–593 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Moulard, M. et al. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120–CD4–CCR5 complexes. Proc. Natl Acad. Sci. USA 99, 6913–6918 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frendo, J. L. et al. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell Biol. 23, 3566–3574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Harris, J. R. Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance. Bioessays 20, 307–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Sarkar, D. P., Ramani, K. & Tyagi, S. K. Targeted gene delivery by virosomes. Methods Mol. Biol. 199, 163–173 (2002).

    CAS  PubMed  Google Scholar 

  102. Yamada, T. et al. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nature Biotechnol. 21, 885–890 (2003).

    Article  CAS  Google Scholar 

  103. Soong, N. W. et al. Molecular breeding of viruses. Nature Genet. 25, 436–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Perabo, L. et al. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol. Ther. 8, 151–157 (2003). Shows, for the first time, that a combinatorial approach based on a eukaryotic virus library allows the generatation of efficient, receptor-specific targeting vectors with a desired tropism.

    Article  CAS  PubMed  Google Scholar 

  105. Xie, Q. et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA 99, 10405–10410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Belnap, D. M. et al. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J. Virol. 74, 1342–1354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Stehle, T. & Dermody, T. S. Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Rev. Med. Virol. 13, 123–132 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weis, W. et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Morton, C. J. et al. Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay. Virology 311, 275–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Bewley, M. C., Springer, K., Zhang, Y. B., Freimuth, P. & Flanagan, J. M. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286, 1579–1583 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Xing, L. et al. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19, 1207–1216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 


Page 2

Nature Reviews Microbiology (Nat Rev Microbiol) ISSN 1740-1534 (online) ISSN 1740-1526 (print)