What type of variable that says on creating changes the relationship between the independent and dependent variables?

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables. Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section. There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables. State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each. In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design, Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

The two main variables in an experiment are the independent and dependent variable.

An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable.

A dependent variable is the variable being tested and measured in a scientific experiment.

The dependent variable is 'dependent' on the independent variable. As the experimenter changes the independent variable, the effect on the dependent variable is observed and recorded.

  • There can be many variables in an experiment, but the two key variables that are always present are the independent and dependent variable.
  • The independent variable is the one that the researcher intentionally changes or controls.
  • The dependent variable is the factor that the research measures. It changes in response to the independent variable or depends upon it.

For example, a scientist wants to see if the brightness of light has any effect on a moth being attracted to the light. The brightness of the light is controlled by the scientist. This would be the independent variable. How the moth reacts to the different light levels (distance to light source) would be the dependent variable.

As another example, say you want to know whether or not eating breakfast affects student test scores. The factor under the experimenter's control is the presence or absence of breakfast, so you know it is the independent variable. The experiment measures test scores of students who ate breakfast versus those who did not. Theoretically, the test results depend on breakfast, so the test results are the dependent variable. Note that test scores are the dependent variable, even if it turns out there is no relationship between scores and breakfast.

For another experiment, a scientist wants to determine whether one drug is more effective than another at controlling high blood pressure. The independent variable is the drug, while patient blood pressure is the dependent variable. In some ways, this experiment resembles the one with breakfast and test scores. However, when comparing two different treatments, such as drug A and drug B, it's usual to add another variable, called the control variable. The control variable, which in this case is a placebo that contains the same inactive ingredients as the drugs, makes it possible to tell whether either drug actually affects blood pressure.

The independent and dependent variables may be viewed in terms of cause and effect. If the independent variable is changed, then an effect is seen in the dependent variable. Remember, the values of both variables may change in an experiment and are recorded. The difference is that the value of the independent variable is controlled by the experimenter, while the value of the dependent variable only changes in response to the independent variable.

When results are plotted in graphs, the convention is to use the independent variable as the x-axis and the dependent variable as the y-axis. The DRY MIX acronym can help keep the variables straight:

D is the dependent variable
R is the responding variable
Y is the axis on which the dependent or responding variable is graphed (the vertical axis)

M is the manipulated variable or the one that is changed in an experiment
I is the independent variable
X is the axis on which the independent or manipulated variable is graphed (the horizontal axis)

  • The independent and dependent variables are the two key variables in a science experiment.
  • The independent variable is the one the experimenter controls. The dependent variable is the variable that changes in response to the independent variable.
  • The two variables may be related by cause and effect. If the independent variable changes, then the dependent variable is affected.
  • Carlson, Robert (2006). A concrete introduction to real analysis. CRC Press, p.183.
  • Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9.
  • Edwards, Joseph (1892). An Elementary Treatise on the Differential Calculus (2nd ed.). London: MacMillan and Co.
  • Everitt, B. S. (2002). The Cambridge Dictionary of Statistics (2nd ed.). Cambridge UP. ISBN 0-521-81099-X.
  • Quine, Willard V. (1960). "Variables Explained Away". Proceedings of the American Philosophical Society. American Philosophical Society. 104 (3): 343–347.