What organelle in the cell needs oxygen?

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

1. Antonsson B. Montessuit S. Lauper S. Eskes R. Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000;345:271–278. [PMC free article] [PubMed] [Google Scholar]

2. Ardyanto TD. Osaki M. Tokuyasu N. Nagahama Y. Ito H. CoCl2-induced HIF-1alpha expression correlates with proliferation and apoptosis in MKN-1 cells: a possible role for the PI3K/Akt pathway. Int J Oncol. 2006;29:549–555. [PubMed] [Google Scholar]

3. Bell EL. Klimova TA. Eisenbart J. Moraes CT. Murphy MP. Budinger GR. Chandel NS. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177:1029–1036. [PMC free article] [PubMed] [Google Scholar]

4. Bruick RK. McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294:1337–1340. [PubMed] [Google Scholar]

5. Brunelle JK. Bell EL. Quesada NM. Vercauteren K. Tiranti V. Zeviani M. Scarpulla RC. Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005;1:409–414. [PubMed] [Google Scholar]

6. Brunelle JK. Santore MT. Budinger GR. Tang Y. Barrett TA. Zong WX. Kandel E. Keith B. Simon MC. Thompson CB. Hay N. Chandel NS. c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J Biol Chem. 2004;279:4305–4312. [PubMed] [Google Scholar]

7. Brunelle JK. Shroff EH. Perlman H. Strasser A. Moraes CT. Flavell RA. Danial NN. Keith B. Thompson CB. Chandel NS. Loss of Mcl-1 protein and inhibition of electron transport chain together induce anoxic cell death. Mol Cell Biol. 2007;27:1222–1235. [PMC free article] [PubMed] [Google Scholar]

8. Bunn HF. Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996;76:839–885. [PubMed] [Google Scholar]

9. Cannon RO., 3rd Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem. 1998;44:1809–1819. [PubMed] [Google Scholar]

10. Chandel NS. Maltepe E. Goldwasser E. Mathieu CE. Simon MC. Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998;95:11715–11720. [PMC free article] [PubMed] [Google Scholar]

11. Chandel NS. McClintock DS. Feliciano CE. Wood TM. Melendez JA. Rodriguez AM. Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–25138. [PubMed] [Google Scholar]

12. Chandel NS. Schumacker PT. Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett. 1999;454:173–176. [PubMed] [Google Scholar]

13. Chen N. Chen X. Huang R. Zeng H. Gong J. Meng W. Lu Y. Zhao F. Wang L. Zhou Q. BCL-xL is a target gene regulated by hypoxia-inducible factor-1-alpha. J Biol Chem. 2009;284:10004–10012. [PMC free article] [PubMed] [Google Scholar]

14. Chen YQ. Zhao CL. Li W. Effect of hypoxia-inducible factor-1alpha on transcription of survivin in non-small cell lung cancer. J Exp Clin Cancer Res. 2009;28:29. [PMC free article] [PubMed] [Google Scholar]

15. Cheng EH. Levine B. Boise LH. Thompson CB. Hardwick JM. Bax-independent inhibition of apoptosis by Bcl-XL. Nature. 1996;379:554–556. [PubMed] [Google Scholar]

16. Cheng EH. Wei MC. Weiler S. Flavell RA. Mak TW. Lindsten T. Korsmeyer SJ. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8:705–711. [PubMed] [Google Scholar]

17. Chipuk JE. Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 2008;18:157–164. [PMC free article] [PubMed] [Google Scholar]

18. Cory S. Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–656. [PubMed] [Google Scholar]

19. Cory S. Huang DC. Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22:8590–8607. [PubMed] [Google Scholar]

20. Czabotar PE. Lee EF. van Delft MF. Day CL. Smith BJ. Huang DC. Fairlie WD. Hinds MG. Colman PM. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci U S A. 2007;104:6217–6222. [PMC free article] [PubMed] [Google Scholar]

21. Danial NN. Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–219. [PubMed] [Google Scholar]

22. Desagher S. Osen-Sand A. Nichols A. Eskes R. Montessuit S. Lauper S. Maundrell K. Antonsson B. Martinou JC. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999;144:891–901. [PMC free article] [PubMed] [Google Scholar]

23. Doege K. Heine S. Jensen I. Jelkmann W. Metzen E. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood. 2005;106:2311–2317. [PubMed] [Google Scholar]

24. Dong Z. Venkatachalam MA. Wang J. Patel Y. Saikumar P. Semenza GL. Force T. Nishiyama J. Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J Biol Chem. 2001;276:18702–18709. [PMC free article] [PubMed] [Google Scholar]

25. Du C. Fang M. Li Y. Li L. Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42. [PubMed] [Google Scholar]

26. Eguchi Y. Shimizu S. Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997;57:1835–1840. [PubMed] [Google Scholar]

27. Epstein AC. Gleadle JM. McNeill LA. Hewitson KS. O'Rourke J. Mole DR. Mukherji M. Metzen E. Wilson MI. Dhanda A. Tian YM. Masson N. Hamilton DL. Jaakkola P. Barstead R. Hodgkin J. Maxwell PH. Pugh CW. Schofield CJ. Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54. [PubMed] [Google Scholar]

28. Erler JT. Cawthorne CJ. Williams KJ. Koritzinsky M. Wouters BG. Wilson C. Miller C. Demonacos C. Stratford IJ. Dive C. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol. 2004;24:2875–2889. [PMC free article] [PubMed] [Google Scholar]

29. Galluzzo M. Pennacchietti S. Rosano S. Comoglio PM. Michieli P. Prevention of hypoxia by myoglobin expression in human tumor cells promotes differentiation and inhibits metastasis. J Clin Invest. 2009;119:865–875. [PMC free article] [PubMed] [Google Scholar]

30. Gao P. Zhang H. Dinavahi R. Li F. Xiang Y. Raman V. Bhujwalla ZM. Felsher DW. Cheng L. Pevsner J. Lee LA. Semenza GL. Dang CV. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230–238. [PMC free article] [PubMed] [Google Scholar]

31. Graeber TG. Osmanian C. Jacks T. Housman DE. Koch CJ. Lowe SW. Giaccia AJ. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91. [PubMed] [Google Scholar]

32. Graeber TG. Peterson JF. Tsai M. Monica K. Fornace AJ., Jr Giaccia AJ. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol. 1994;14:6264–6277. [PMC free article] [PubMed] [Google Scholar]

33. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102:1–4. [PubMed] [Google Scholar]

34. Gu YZ. Moran SM. Hogenesch JB. Wartman L. Bradfield CA. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr. 1998;7:205–213. [PMC free article] [PubMed] [Google Scholar]

35. Guzy RD. Hoyos B. Robin E. Chen H. Liu L. Mansfield KD. Simon MC. Hammerling U. Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–408. [PubMed] [Google Scholar]

36. Hagen T. Taylor CT. Lam F. Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302:1975–1978. [PubMed] [Google Scholar]

37. Hamacher-Brady A. Brady NR. Logue SE. Sayen MR. Jinno M. Kirshenbaum LA. Gottlieb RA. Gustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14:146–157. [PubMed] [Google Scholar]

38. Harris AL. Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47. [PubMed] [Google Scholar]

39. Ivan M. Kondo K. Yang H. Kim W. Valiando J. Ohh M. Salic A. Asara JM. Lane WS. Kaelin WG., Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–4548. [PubMed] [Google Scholar]

40. Iwai K. Yamanaka K. Kamura T. Minato N. Conaway RC. Conaway JW. Klausner RD. Pause A. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A. 1999;96:12436–12441. [PMC free article] [PubMed] [Google Scholar]

41. Jaakkola P. Mole DR. Tian YM. Wilson MI. Gielbert J. Gaskell SJ. Kriegsheim A. Hebestreit HF. Mukherji M. Schofield CJ. Maxwell PH. Pugh CW. Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–472. [PubMed] [Google Scholar]

42. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62. [PubMed] [Google Scholar]

43. Jiang BH. Semenza GL. Bauer C. Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996;271:C1172–C1180. [PubMed] [Google Scholar]

44. Kim JY. Ahn HJ. Ryu JH. Suk K. Park JH. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med. 2004;199:113–124. [PMC free article] [PubMed] [Google Scholar]

45. Kim RH. Peters M. Jang Y. Shi W. Pintilie M. Fletcher GC. DeLuca C. Liepa J. Zhou L. Snow B. Binari RC. Manoukian AS. Bray MR. Liu FF. Tsao MS. Mak TW. DJ-1: a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7:263–273. [PubMed] [Google Scholar]

46. Kim RH. Smith PD. Aleyasin H. Hayley S. Mount MP. Pownall S. Wakeham A. You-Ten AJ. Kalia SK. Horne P. Westaway D. Lozano AM. Anisman H. Park DS. Mak TW. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A. 2005;102:5215–5220. [PMC free article] [PubMed] [Google Scholar]

47. Kischkel FC. Hellbardt S. Behrmann I. Germer M. Pawlita M. Krammer PH. Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14:5579–5588. [PMC free article] [PubMed] [Google Scholar]

48. Klimova T. Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008;15:660–666. [PubMed] [Google Scholar]

49. Koumenis C. Alarcon R. Hammond E. Sutphin P. Hoffman W. Murphy M. Derr J. Taya Y. Lowe SW. Kastan M. Giaccia A. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 2001;21:1297–1310. [PMC free article] [PubMed] [Google Scholar]

50. Koumenis C. Giaccia A. Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol Cell Biol. 1997;17:7306–7316. [PMC free article] [PubMed] [Google Scholar]

51. Kroemer G. Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–519. [PubMed] [Google Scholar]

52. Kuwana T. Bouchier-Hayes L. Chipuk JE. Bonzon C. Sullivan BA. Green DR. Newmeyer DD. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell. 2005;17:525–535. [PubMed] [Google Scholar]

53. Lando D. Peet DJ. Gorman JJ. Whelan DA. Whitelaw ML. Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–1471. [PMC free article] [PubMed] [Google Scholar]

54. Lando D. Peet DJ. Whelan DA. Gorman JJ. Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295:858–861. [PubMed] [Google Scholar]

55. Leist M. Single B. Castoldi AF. Kuhnle S. Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185:1481–1486. [PMC free article] [PubMed] [Google Scholar]

56. Letai A. Bassik MC. Walensky LD. Sorcinelli MD. Weiler S. Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–192. [PubMed] [Google Scholar]

57. Li P. Nijhawan D. Budihardjo I. Srinivasula SM. Ahmad M. Alnemri ES. Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–489. [PubMed] [Google Scholar]

58. Li YZ. Lu DY. Tan WQ. Wang JX. Li PF. p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol. 2008;28:564–574. [PMC free article] [PubMed] [Google Scholar]

59. Liu B. Gao HM. Wang JY. Jeohn GH. Cooper CL. Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci. 2002;962:318–331. [PubMed] [Google Scholar]

60. Liu X. Kim CN. Yang J. Jemmerson R. Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–157. [PubMed] [Google Scholar]

61. Mahon PC. Hirota K. Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15:75–86. [PMC free article] [PubMed] [Google Scholar]

62. Majewski N. Nogueira V. Bhaskar P. Coy PE. Skeen JE. Gottlob K. Chandel NS. Thompson CB. Robey RB. Hay N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004;16:819–830. [PubMed] [Google Scholar]

63. Makino Y. Cao R. Svensson K. Bertilsson G. Asman M. Tanaka H. Cao Y. Berkenstam A. Poellinger L. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 2001;414:550–554. [PubMed] [Google Scholar]

64. Makino Y. Kanopka A. Wilson WJ. Tanaka H. Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem. 2002;277:32405–32428. [PubMed] [Google Scholar]

65. Mansfield KD. Guzy RD. Pan Y. Young RM. Cash TP. Schumacker PT. Simon MC. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 2005;1:393–399. [PMC free article] [PubMed] [Google Scholar]

66. Maurer U. Charvet C. Wagman AS. Dejardin E. Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 2006;21:749–760. [PubMed] [Google Scholar]

67. Maynard MA. Qi H. Chung J. Lee EH. Kondo Y. Hara S. Conaway RC. Conaway JW. Ohh M. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 2003;278:11032–11040. [PubMed] [Google Scholar]

68. McClintock DS. Santore MT. Lee VY. Brunelle J. Budinger GR. Zong WX. Thompson CB. Hay N. Chandel NS. Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol. 2002;22:94–104. [PMC free article] [PubMed] [Google Scholar]

69. Mihara M. Erster S. Zaika A. Petrenko O. Chittenden T. Pancoska P. Moll UM. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–590. [PubMed] [Google Scholar]

70. Miyashita T. Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–299. [PubMed] [Google Scholar]

71. Muzio M. Chinnaiyan AM. Kischkel FC. O'Rourke K. Shevchenko A. Ni J. Scaffidi C. Bretz JD. Zhang M. Gentz R. Mann M. Krammer PH. Peter ME. Dixit VM. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell. 1996;85:817–827. [PubMed] [Google Scholar]

72. Nakano K. Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–694. [PubMed] [Google Scholar]

73. O'Rourke JF. Tian YM. Ratcliffe PJ. Pugh CW. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem. 1999;274:2060–2071. [PubMed] [Google Scholar]

74. Oda E. Ohki R. Murasawa H. Nemoto J. Shibue T. Yamashita T. Tokino T. Taniguchi T. Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–1058. [PubMed] [Google Scholar]

75. Pan Y. Oprysko PR. Asham AM. Koch CJ. Simon MC. p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene. 2004;23:4975–4983. [PubMed] [Google Scholar]

76. Papandreou I. Krishna C. Kaper F. Cai D. Giaccia AJ. Denko NC. Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res. 2005;65:3171–3178. [PubMed] [Google Scholar]

77. Papandreou I. Lim AL. Laderoute K. Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008;15:1572–1581. [PubMed] [Google Scholar]

78. Parsadanian AS. Cheng Y. Keller-Peck CR. Holtzman DM. Snider WD. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci. 1998;18:1009–1019. [PMC free article] [PubMed] [Google Scholar]

79. Petros AM. Nettesheim DG. Wang Y. Olejniczak ET. Meadows RP. Mack J. Swift K. Matayoshi ED. Zhang H. Thompson CB. Fesik SW. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 2000;9:2528–2534. [PMC free article] [PubMed] [Google Scholar]

80. Petros AM. Olejniczak ET. Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta. 2004;1644:83–94. [PubMed] [Google Scholar]

81. Piret JP. Minet E. Cosse JP. Ninane N. Debacq C. Raes M. Michiels C. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem. 2005;280:9336–9344. [PubMed] [Google Scholar]

82. Pisani A. Martella G. Tscherter A. Costa C. Mercuri NB. Bernardi G. Shen J. Calabresi P. Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment: role of Na+/K+ ATPase. Neurobiol Dis. 2006;23:54–60. [PubMed] [Google Scholar]

83. Ray R. Chen G. Vande Velde C. Cizeau J. Park JH. Reed JC. Gietz RD. Greenberg AH. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem. 2000;275:1439–1448. [PubMed] [Google Scholar]

84. Saikumar P. Dong Z. Patel Y. Hall K. Hopfer U. Weinberg JM. Venkatachalam MA. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene. 1998;17:3401–3415. [PubMed] [Google Scholar]

85. Sanjuan-Pla A. Cervera AM. Apostolova N. Garcia-Bou R. Victor VM. Murphy MP. McCreath KJ. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett. 2005;579:2669–2674. [PubMed] [Google Scholar]

86. Santore MT. McClintock DS. Lee VY. Budinger GR. Chandel NS. Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L727–L734. [PubMed] [Google Scholar]

87. Saraste M. Oxidative phosphorylation at the fin de siecle. Science. 1999;283:1488–1493. [PubMed] [Google Scholar]

88. Sax JK. Fei P. Murphy ME. Bernhard E. Korsmeyer SJ. El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4:842–849. [PubMed] [Google Scholar]

89. Schmaltz C. Hardenbergh PH. Wells A. Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol. 1998;18:2845–2854. [PMC free article] [PubMed] [Google Scholar]

90. Schroedl C. McClintock DS. Budinger GR. Chandel NS. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2002;283:L922–L931. [PubMed] [Google Scholar]

91. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–578. [PubMed] [Google Scholar]

92. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–732. [PubMed] [Google Scholar]

93. Soengas MS. Alarcon RM. Yoshida H. Giaccia AJ. Hakem R. Mak TW. Lowe SW. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science. 1999;284:156–159. [PubMed] [Google Scholar]

94. Strasser A. Harris AW. Huang DC. Krammer PH. Cory S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 1995;14:6136–6147. [PMC free article] [PubMed] [Google Scholar]

95. Susin SA. Lorenzo HK. Zamzami N. Marzo I. Snow BE. Brothers GM. Mangion J. Jacotot E. Costantini P. Loeffler M. Larochette N. Goodlett DR. Aebersold R. Siderovski DP. Penninger JM. Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441–446. [PubMed] [Google Scholar]

96. Taira T. Saito Y. Niki T. Iguchi-Ariga SM. Takahashi K. Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 2004;5:213–218. [PMC free article] [PubMed] [Google Scholar]

97. Tarrago-Litvak L. Viratelle O. Darriet D. Dalibart R. Graves PV. Litvak S. The inhibition of mitochondrial DNA polymerase gamma from animal cells by intercalating drugs. Nucleic Acids Res. 1978;5:2197–2210. [PMC free article] [PubMed] [Google Scholar]

98. Tracy K. Dibling BC. Spike BT. Knabb JR. Schumacker P. Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol. 2007;27:6229–6242. [PMC free article] [PubMed] [Google Scholar]

99. Vande Velde C. Cizeau J. Dubik D. Alimonti J. Brown T. Israels S. Hakem R. Greenberg AH. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20:5454–5468. [PMC free article] [PubMed] [Google Scholar]

100. Vasseur S. Afzal S. Tardivel-Lacombe J. Park DS. Iovanna JL. Mak TW. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc Natl Acad Sci U S A. 2009;106:1111–1116. [PMC free article] [PubMed] [Google Scholar]

101. Wang GL. Jiang BH. Rue EA. Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–5514. [PMC free article] [PubMed] [Google Scholar]

102. Wei MC. Zong WX. Cheng EH. Lindsten T. Panoutsakopoulou V. Ross AJ. Roth KA. MacGregor GR. Thompson CB. Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–730. [PMC free article] [PubMed] [Google Scholar]

103. Wiesener MS. Jurgensen JS. Rosenberger C. Scholze CK. Horstrup JH. Warnecke C. Mandriota S. Bechmann I. Frei UA. Pugh CW. Ratcliffe PJ. Bachmann S. Maxwell PH. Eckardt KU. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17:271–273. [PubMed] [Google Scholar]

104. Wiesener MS. Turley H. Allen WE. Willam C. Eckardt KU. Talks KL. Wood SM. Gatter KC. Harris AL. Pugh CW. Ratcliffe PJ. Maxwell PH. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood. 1998;92:2260–2268. [PubMed] [Google Scholar]

105. Willis SN. Chen L. Dewson G. Wei A. Naik E. Fletcher JI. Adams JM. Huang DC. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005;19:1294–305. [PMC free article] [PubMed] [Google Scholar]

106. Yu J. Zhang L. Hwang PM. Kinzler KW. Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673–682. [PubMed] [Google Scholar]


Page 2

What organelle in the cell needs oxygen?

Mitochondria act as signaling organelles in low-oxygen conditions. Hypoxia (0.5–3% oxygen) increases mitochondrial ROS that activate transcription of adaptive genes. Anoxia (0–0.5% oxygen) initiates mitochondrial outer membrane permeabilization (MOMP) to activate cell death.

  • What organelle in the cell needs oxygen?
  • What organelle in the cell needs oxygen?
  • What organelle in the cell needs oxygen?
  • What organelle in the cell needs oxygen?
  • What organelle in the cell needs oxygen?
  • What organelle in the cell needs oxygen?
  • What organelle in the cell needs oxygen?

Click on the image to see a larger version.