What is a reliable and valid method of measuring energy expenditure up to a 3-week time period?

  1. Delsoglio M, Achamrah N, Berger MM, Pichard C. Indirect calorimetry in clinical practice. J Clin Med. 2019;8(9):706–42.

    Article  CAS  Google Scholar 

  2. Ndahimana D, Kim EK. Energy requirements in critically ill patients. Clin Nutr Res. 2018;7(2):81–90.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Braunschweig CA, Sheean PM, Peterson SJ, Gomez PS, Freels S, Lateef O, et al. Intensive nutrition in acute lung injury: a clinical trial (INTACT). JPEN J Parenter Enteral Nutr. 2015;39(1):13–20.

    PubMed  Article  Google Scholar 

  4. McKeever L, Bonini M, Braunschweig C. Feeding during phases of altered mitochondrial activity: a theory. JPEN J Parenter Enteral Nutr. 2018;42(5):855–63.

    CAS  PubMed  Article  Google Scholar 

  5. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.

    CAS  PubMed  Article  Google Scholar 

  6. Bendavid I, Singer P, Theilla M, Themessl-Huber M, Sulz I, Mouhieddine M, et al. NutritionDay ICU: a 7 year worldwide prevalence study of nutrition practice in intensive care. Clin Nutr. 2017;36(4):1122–9.

    PubMed  Article  Google Scholar 

  7. Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. JPEN J Parenter Enteral Nutr. 2016;40(2):212–25.

    CAS  PubMed  Article  Google Scholar 

  8. Schlein KM, Coulter SP. Best practices for determining resting energy expenditure in critically ill adults. Nutr Clin Pract. 2014;29(1):44–55.

    PubMed  Article  Google Scholar 

  9. de Waele E, Malbrain MLNG, Spapen H. Nutrition in sepsis: a bench-to-bedside review. Nutrients. 2020;12(2):395.

    PubMed Central  Article  CAS  Google Scholar 

  10. De WE, Spapen H, Honore PM, Mattens S, Rose T, Huyghens L. Bedside calculation of energy expenditure does not guarantee adequate caloric prescription in long-term mechanically ventilated critically ill patients: a quality control study. ScientificWorldJournal. 2012;2012:909564.

    Google Scholar 

  11. Ridley EJ, Parke RL, Davies AR, Bailey M, Hodgson C, Deane AM, et al. What happens to nutrition intake in the post-intensive care unit hospitalization period? An observational cohort study in critically ill adults. JPEN J Parenter Enteral Nutr. 2019;43(1):88–95.

    CAS  PubMed  Article  Google Scholar 

  12. Ridley EJ, Tierney A, King S, Ainslie E, Udy A, Scheinkestel C, et al. Measured energy expenditure compared with best-practice recommendations for obese, critically ill patients-a prospective observational study. JPEN J Parenter Enteral Nutr. 2020;6:1144–9.

    Article  Google Scholar 

  13. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9.

    PubMed  Article  Google Scholar 

  14. Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care. 2016;20(1):367.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Berger MM, Pichard C. Feeding should be individualized in the critically ill patients. Curr Opin Crit Care. 2019;25(4):307–13.

    PubMed  Article  Google Scholar 

  16. Oshima T, Delsoglio M, Dupertuis YM, Singer P, De WE, Veraar C, et al. The clinical evaluation of the new indirect calorimeter developed by the ICALIC project. Clin Nutr. 2020;32:50–5.

    Google Scholar 

  17. van Zanten ARH, De WE, Wischmeyer PE. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit Care. 2019;23(1):368.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.

    PubMed  Article  Google Scholar 

  19. Oshima T, Berger MM, De WE, Guttormsen AB, Heidegger CP, Hiesmayr M, et al. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin Nutr. 2017;36(3):651–62.

    PubMed  Article  Google Scholar 

  20. De WE, Honore PM, Malbrain MLNG. Does the use of indirect calorimetry change outcome in the ICU? Yes it does. Curr Opin Clin Nutr Metab Care. 2018;21(2):126–9.

    Article  Google Scholar 

  21. Berger MM. Nutrition and micronutrient therapy in critical illness should be individualized. JPEN J Parenter Enteral Nutr. 2020;44(8):1380–7.

    PubMed  Article  Google Scholar 

  22. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (a.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.

    CAS  PubMed  Article  Google Scholar 

  23. Fraipont V, Preiser JC. Energy estimation and measurement in critically ill patients. JPEN J Parenter Enteral Nutr. 2013;37(6):705–13.

    PubMed  Article  Google Scholar 

  24. Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract. 2007;22(4):377–88.

    PubMed  Article  Google Scholar 

  25. Gupta RD, Ramachandran R, Venkatesan P, Anoop S, Joseph M, Thomas N. Indirect calorimetry: from bench to bedside. Indian J Endocrinol Metab. 2017;21(4):594–9.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19(1):35.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Cuthbertson DP, Angeles Valero Zanuy MA, Leon Sanz ML. Post-shock metabolic response. 1942. Nutr Hosp. 2001;16(5):176–82.

    CAS  PubMed  Google Scholar 

  28. Rattanachaiwong S, Singer P. Indirect calorimetry as point of care testing. Clin Nutr. 2019;38(6):2531–44.

    PubMed  Article  Google Scholar 

  29. Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4):601–9.

    PubMed  Article  Google Scholar 

  30. Headley JM. Indirect calorimetry: a trend toward continuous metabolic assessment. AACN Clin Issues. 2003;14(2):155–67.

    PubMed  Article  Google Scholar 

  31. Tah PC, Lee ZY, Poh BK, Abdul MH, Hakumat-Rai VR, Mat Nor MB, et al. A single-center prospective observational study comparing resting energy expenditure in different phases of critical illness: indirect calorimetry versus predictive equations. Crit Care Med. 2020;48(5):e380–90.

    PubMed  Article  Google Scholar 

  32. Cuesta JM, Singer M. The stress response and critical illness: a review. Crit Care Med. 2012;40(12):3283–9.

    PubMed  Article  Google Scholar 

  33. Lambell KJ, Tatucu-Babet OA, Chapple LA, Gantner D, Ridley EJ. Nutrition therapy in critical illness: a review of the literature for clinicians. Crit Care. 2020;24(1):35.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Stahel PF, Flierl MA, Moore EE. “Metabolic staging” after major trauma - a guide for clinical decision making? Scand J Trauma Resusc Emerg Med. 2010;18:34.

    PubMed  PubMed Central  Article  Google Scholar 

  35. Preiser JC, Ichai C, Orban JC, Groeneveld AB. Metabolic response to the stress of critical illness. Br J Anaesth. 2014;113(6):945–54.

    CAS  PubMed  Article  Google Scholar 

  36. Wischmeyer PE. Nutrition therapy in sepsis. Crit Care Clin. 2018;34(1):107–25.

    PubMed  Article  Google Scholar 

  37. Singer M. Critical illness and flat batteries. Crit Care. 2017;21(Suppl 3):309.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Wischmeyer PE. Tailoring nutrition therapy to illness and recovery. Crit Care. 2017;21(Suppl 3):316.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Zauner C, Schuster BI, Schneeweiss B. Similar metabolic responses to standardized total parenteral nutrition of septic and nonseptic critically ill patients. Am J Clin Nutr. 2001;74(2):265–70.

    CAS  PubMed  Article  Google Scholar 

  40. Moonen HPFX, van Zanten ARH. Mitochondrial dysfunction in critical illness during acute metabolic stress and convalescence: consequences for nutrition therapy. Curr Opin Crit Care. 2020;74(2):265–70.

    Google Scholar 

  41. Garrabou G, Moren C, Lopez S, Tobias E, Cardellach F, Miro O, et al. The effects of sepsis on mitochondria. J Infect Dis. 2012;205(3):392–400.

    CAS  PubMed  Article  Google Scholar 

  42. Wu C, Wang X, Yu W, Tian F, Liu S, Li P, et al. Hypermetabolism in the initial phase of intensive care is related to a poor outcome in severe sepsis patients. Ann Nutr Metab. 2015;66(4):188–95.

    CAS  PubMed  Article  Google Scholar 

  43. Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: potential role of nutritional components to improve critical illness convalescence. Clin Nutr. 2019;38(3):982–95.

    CAS  PubMed  Article  Google Scholar 

  44. Tappy L, Schwarz JM, Schneiter P, Cayeux C, Revelly JP, Fagerquist CK, et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med. 1998;26(5):860–7.

    CAS  PubMed  Article  Google Scholar 

  45. Viana MV, Pantet O, Bagnoud G, Martinez A, Favre E, Charriere M, et al. Metabolic and nutritional characteristics of long-stay critically ill patients. J Clin Med. 2019;8(7):860–7.

    Article  CAS  Google Scholar 

  46. Berger MM, Pantet O, Jacquelin-Ravel N, Charriere M, Schmidt S, Becce F, et al. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: the SPN2 randomized tracer study. Clin Nutr. 2019;38(5):2408–16.

    CAS  PubMed  Article  Google Scholar 

  47. Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J Parenter Enteral Nutr. 1979;3(6):452–6.

    CAS  PubMed  Article  Google Scholar 

  48. Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998;228(2):146–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999;27(7):1295–302.

    CAS  PubMed  Article  Google Scholar 

  51. Vasileiou G, Qian S, Iyengar R, Mulder MB, Gass LM, Parks J, et al. Use of predictive equations for energy prescription results in inaccurate estimation in trauma patients. Nutr Clin Pract. 2019;27(7):1295–302.

    Google Scholar 

  52. Whittle J, Molinger J, MacLeod D, Haines K, Wischmeyer PE. Persistent hypermetabolism and longitudinal energy expenditure in critically ill patients with COVID-19. Crit Care. 2020;24(1):581.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Rosenthal MD, Bala T, Wang Z, Loftus T, Moore F. Chronic critical illness patients fail to respond to current evidence-based intensive care nutrition secondarily to persistent inflammation, immunosuppression, and catabolic syndrome. JPEN J Parenter Enteral Nutr. 2020;24:581.

    Google Scholar 

  54. De WE, Jonckheer J, Pen JJ, Demol J, Staessens K, Puis L, et al. Energy expenditure of patients on ECMO: a prospective pilot study. Acta Anaesthesiol Scand. 2019;63(3):360–4.

    Article  CAS  Google Scholar 

  55. Mtaweh H, Soto Aguero MJ, Campbell M, Allard JP, Pencharz P, Pullenayegum E, et al. Systematic review of factors associated with energy expenditure in the critically ill. Clin Nutr ESPEN. 2019;33:111–24.

    PubMed  Article  Google Scholar 

  56. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1-2):1–9.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Wilmore JH, Costill DL. Adequacy of the Haldane transformation in the computation of exercise V O2 in man. J Appl Physiol. 1973;35(1):85–9.

    CAS  PubMed  Article  Google Scholar 

  58. Kopp LA, de WA, Hollinger A, Goetz N, Heidegger C. Medical nutrition therapy in critically ill patients treated on intensive and intermediate care units: a literature review. J Clin Med. 2019;8(9):85-9.

  59. Achamrah N, Delsoglio M, De WE, Berger MM, Pichard C. Indirect calorimetry: the 6 main issues. Clin Nutr. 2020;8(9):1395.

    Google Scholar 

  60. McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003;27(1):21–6.

    PubMed  Article  Google Scholar 

  61. Psota T, Chen KY. Measuring energy expenditure in clinical populations: rewards and challenges. Eur J Clin Nutr. 2013;67(5):436–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Delsoglio M, Dupertuis YM, Oshima T, van der Plas M, Pichard C. Evaluation of the accuracy and precision of a new generation indirect calorimeter in canopy dilution mode. Clin Nutr. 2019.

  63. Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect calorimetry: history, technology, and application. Front Pediatr. 2018;6:257.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Sundstrom M, Tjader I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin Nutr. 2013;32(1):118–21.

    PubMed  Article  Google Scholar 

  65. Cooper JA, Watras AC, O’Brien MJ, Luke A, Dobratz JR, Earthman CP, et al. Assessing validity and reliability of resting metabolic rate in six gas analysis systems. J Am Diet Assoc. 2009;109(1):128–32.

    PubMed  PubMed Central  Article  Google Scholar 

  66. Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II((R))? A prospective observational study. Clin Nutr. 2015;34(1):60–5.

    PubMed  Article  Google Scholar 

  67. Rehal MS, Fiskaare E, Tjader I, Norberg A, Rooyackers O, Wernerman J. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.

    PubMed  PubMed Central  Article  Google Scholar 

  68. Oshima T, Dupertuis YM, Delsoglio M, Graf S, Heidegger CP, Pichard C. In vitro validation of indirect calorimetry device developed for the ICALIC project against mass spectrometry. Clin Nutr ESPEN. 2019;32:50–5.

    PubMed  Article  Google Scholar 

  69. Guttormsen AB, Pichard C. Determining energy requirements in the ICU. Curr Opin Clin Nutr Metab Care. 2014;17(2):171–6.

    PubMed  Article  Google Scholar 

  70. Honore PM, Barreto GL, Kugener L, Redant S, Attou R, Gallerani A, et al. Using indirect calorimetry in place of fixed energy prescription was feasible and energy targets were more closely met: do not forget an important limitation. Crit Care. 2020;24(1):369.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Jonckheer J, Spapen H, Malbrain MLNG, Oschima T, De WE. Energy expenditure and caloric targets during continuous renal replacement therapy under regional citrate anticoagulation. A viewpoint. Clin Nutr. 2020;39(2):353–7.

    CAS  PubMed  Article  Google Scholar 

  72. Jonckheer J, Demol J, Lanckmans K, Malbrain MLNG, Spapen H, De WE. MECCIAS trial: metabolic consequences of continuous veno-venous hemofiltration on indirect calorimetry. Clin Nutr. 2020;39(2):353–7.

    CAS  PubMed  Article  Google Scholar 

  73. MacGowan L, Smith E, Elliott-Hammond C, Sanderson B, Ong D, Daly K, et al. Adequacy of nutrition support during extracorporeal membrane oxygenation. Clin Nutr. 2019;38(1):324–31.

    CAS  PubMed  Article  Google Scholar 

  74. de Waele E, van ZK, Mattens S, Staessens K, Diltoer M, Honore PM, et al. Measuring resting energy expenditure during extracorporeal membrane oxygenation: preliminary clinical experience with a proposed theoretical model. Acta Anaesthesiol Scand. 2015;59(10):1296–302.

    PubMed  Article  CAS  Google Scholar 

  75. Wollersheim T, Frank S, Muller MC, Skrypnikov V, Carbon NM, Pickerodt PA, et al. Measuring energy expenditure in extracorporeal lung support patients (MEEP) - protocol, feasibility and pilot trial. Clin Nutr. 2018;37(1):301–7.

    CAS  PubMed  Article  Google Scholar 

  76. Stoppe C, Nesterova E, Elke G. Nutritional support in patients with extracorporeal life support and ventricular assist devices. Curr Opin Crit Care. 2018;24(4):269–76.

    PubMed  Article  Google Scholar 

  77. Singer P, Singer J. Clinical guide for the use of metabolic carts: indirect calorimetry--no longer the orphan of energy estimation. Nutr Clin Pract. 2016;31(1):30–8.

    CAS  PubMed  Article  Google Scholar 

  78. Koekkoek WAC, Menger YA, van Zanten FJL, van DD, van Zanten ARH. The effect of cisatracurium infusion on the energy expenditure of critically ill patients: an observational cohort study. Crit Care. 2020;24(1):32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. van Herpen CH, van Blokland DA, van Zanten ARH. Metabolic effects of beta-blockers in critically ill patients: a retrospective cohort study. Heart Lung. 2019;48(4):278–86.

    PubMed  Article  Google Scholar 

  80. Compher C, Frankenfield D, Keim N, Roth-Yousey L. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903.

    PubMed  Article  Google Scholar 

  81. Mooij CM, Beurskens CJ, Juffermans NP. Energy expenditure in different patient populations on intensive care: one size does not fit all. Neth J Crit Care 13 AD. 2013;17(3):3–7.

  82. Hoher JA, Zimermann Teixeira PJ, Hertz F, Moreira d S. A comparison between ventilation modes: how does activity level affect energy expenditure estimates? JPEN J Parenter Enteral Nutr. 2008;32(2):176–83.

    PubMed  Article  Google Scholar 

  83. Chen YH, Hsiao HF, Hsu HW, Cho HY, Huang CC. Comparisons of metabolic load between adaptive support ventilation and pressure support ventilation in mechanically ventilated ICU patients. Can Respir J. 2020;2020:2092879.

    PubMed  PubMed Central  Google Scholar 

  84. Siirala W, Noponen T, Olkkola KT, Vuori A, Koivisto M, Hurme S, et al. Validation of indirect calorimetry for measurement of energy expenditure in healthy volunteers undergoing pressure controlled non-invasive ventilation support. J Clin Monit Comput. 2012;26(1):37–43.

    PubMed  Article  Google Scholar 

  85. Arabi YM, Casaer MP, Chapman M, Heyland DK, Ichai C, Marik PE, et al. The intensive care medicine research agenda in nutrition and metabolism. Intensive Care Med. 2017;43(9):1239–56.

    PubMed  PubMed Central  Article  Google Scholar 

  86. Singer P, Pichard C, Rattanachaiwong S. Evaluating the TARGET and EAT-ICU trials: how important are accurate caloric goals? Point-counterpoint: the pro position. Curr Opin Clin Nutr Metab Care. 2020;23(2):91–5.

    PubMed  Article  Google Scholar 

  87. Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr. 2019;38(2):584–93.

    PubMed  Article  Google Scholar 

  88. Weissman C, Kemper M, Hyman AI. Variation in the resting metabolic rate of mechanically ventilated critically ill patients. Anesth Analg. 1989;68(4):457–61.

    CAS  PubMed  Article  Google Scholar 

  89. Chapple LS, Fetterplace K, Asrani V, Burrell A, Cheng AC, Collins P, et al. Nutrition management for critically and acutely unwell hospitalised patients with coronavirus disease 2019 (COVID-19) in Australia and New Zealand. Nutr Diet. 2020;77(4):426–36.

    PubMed  PubMed Central  Article  Google Scholar 

  90. Singer P, Pichard C, De WE. Practical guidance for the use of indirect calorimetry during COVID 19 pandemic. Clin Nutr Exp. 2020;33:18–23.

    PubMed  PubMed Central  Article  Google Scholar 

  91. Zusman O, Kagan I, Bendavid I, Theilla M, Cohen J, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation. Clin Nutr. 2019;38(3):1206–10.

    PubMed  Article  Google Scholar 

  92. Rattanachaiwong S, Singer P. Should we calculate or measure energy expenditure? Practical aspects in the ICU. Nutrition. 2018;55-56:71–5.

    PubMed  Article  Google Scholar 

  93. De WE, Spapen H, Honore PM, Mattens S, Van GV, Diltoer M, et al. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: feasibility, practical considerations, and comparison with a mathematical equation. J Crit Care. 2013;28(5):884–6.

    Google Scholar 

  94. De WE, Opsomer T, Honore PM, Diltoer M, Mattens S, Huyghens L, et al. Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard? Minerva Anestesiol. 2015;81(3):272–82.

    Google Scholar 

  95. Oliveira ACDS, de Oliveira CC, de Jesus MT, Menezes NNB, de Gois FN, da Silva JT, et al. Comparison of equations to predict energy requirements with indirect calorimetry in hospitalized patients. JPEN J Parenter Enteral Nutr. 2020;272-82.

  96. Stapel SN, de Grooth HJ, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.

    PubMed  PubMed Central  Article  Google Scholar 

  97. Oshima T, Graf S, Heidegger CP, Genton L, Pugin J, Pichard C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit Care. 2017;21(1):13.

    PubMed  PubMed Central  Article  Google Scholar 

  98. Koekkoek WAC, Xiaochen G, van DD, van Zanten ARH. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO(2) derived method in critically ill patients: the DREAM-VCO(2) prospective comparative study. Clin Nutr ESPEN. 2020;39:137–43.

    CAS  PubMed  Article  Google Scholar 

  99. Tatucu-Babet OA, Fetterplace K, Lambell K, Miller E, Deane AM, Ridley EJ. Is energy delivery guided by indirect calorimetry associated with improved clinical outcomes in critically ill patients? A systematic review and meta-analysis. Nutr Metab Insights. 2020;13:1178638820903295.

    PubMed  PubMed Central  Article  Google Scholar 

  100. Gonzalez-Granda A, Schollenberger A, Haap M, Riessen R, Bischoff SC. Optimization of nutrition therapy with the use of calorimetry to determine and control energy needs in mechanically ventilated critically ill patients: the ONCA study, a randomized, prospective pilot study. JPEN J Parenter Enteral Nutr. 2019;43(4):481–9.

    PubMed  Article  Google Scholar 

  101. Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.

    PubMed  Article  Google Scholar 

  102. Petros S, Horbach M, Seidel F, Weidhase L. Hypocaloric vs normocaloric nutrition in critically ill patients: a prospective randomized pilot trial. JPEN J Parenter Enteral Nutr. 2016;40(2):242–9.

    CAS  PubMed  Article  Google Scholar 

  103. Singer P, De Waele E, Sanchez C, Ruiz-Santana S, Montejo JC, Laterre P, et al. CN03: TICACOS international: a multi-center, randomized, prospective controlled study comparing tight calorie control versus liberal calorie administration study. Clin Nutr. 2020;38(September 2019):S1–S32.

    Google Scholar 

  104. Allingstrup MJ, Kondrup J, Wiis J, Claudius C, Pedersen UG, Hein-Rasmussen R, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-Centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017;43(11):1637–47.

    PubMed  Article  Google Scholar 

  105. Koekkoek WACK, van Setten CHC, Olthof LE, Kars JCNH, van Zanten ARH. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: the PROTINVENT retrospective study. Clin Nutr. 2019;38(2):883–90.

    PubMed  Article  Google Scholar 

  106. Mehta NM, Skillman HE, Irving SY, Coss-Bu JA, Vermilyea S, Farrington EA, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–42.

    PubMed  Article  Google Scholar 

  107. de Koning MLY, Koekkoek WACK, Kars JCNH, van Zanten ARH. Association of PROtein and CAloric intake and clinical outcomes in adult SEPTic and non-septic ICU patients on prolonged mechanical ventilation: the PROCASEPT retrospective study. JPEN J Parenter Enteral Nutr. 2019;41(5):709–42.

    Google Scholar 

  108. Bendavid I, Zusman O, Kagan I, Theilla M, Cohen J, Singer P. Early administration of protein in critically ill patients: a retrospective cohort study. Nutrients. 2019;11(1):434–43.

    Article  CAS  Google Scholar 

  109. Liusuwan Manotok RA, Palmieri TL, Greenhalgh DG. The respiratory quotient has little value in evaluating the state of feeding in burn patients. J Burn Care Res. 2008;29(4):655–9.

    PubMed  Article  Google Scholar 

  110. Li A, Mukhopadhyay A. Substrate utilization and energy expenditure pattern in sepsis by indirect calorimetry. Crit Care. 2020;24(1):535.

    PubMed  PubMed Central  Article  Google Scholar 

  111. Patkova A, Joskova V, Havel E, Najpaverova S, Uramova D, Kovarik M, et al. Prognostic value of respiratory quotients in severe polytrauma patients with nutritional support. Nutrition. 2018;49:90–5.

    PubMed  Article  Google Scholar 

  112. Rosenthal M, Gabrielli A, Moore F. The evolution of nutritional support in long term ICU patients: from multisystem organ failure to persistent inflammation immunosuppression catabolism syndrome. Minerva Anestesiol. 2016;82(1):84–96.

    PubMed  Google Scholar 

  113. Moore FA, Phillips SM, McClain CJ, Patel JJ, Martindale RG. Nutrition support for persistent inflammation, immunosuppression, and catabolism syndrome. Nutr Clin Pract. 2017;32(1_suppl):121S–7S.

    PubMed  PubMed Central  Article  Google Scholar 


Page 2

↑ Energy expenditure ↓ Energy expenditure
■ Caucasian ethnicity ■ Overfeeding ■ Physical exercise, agitation ■ ↑ Minute volume ■ Hyperthermia ■ Hyperthyroidism ■ Metabolic acidosis ■ Stress (cortisol, glucagon, norepinephrine) ■ Systemic inflammation, sepsis

■ Burns

■ Female sex ■ Older age ■ ↓ Lean body mass ■ Prolonged fasting, underfeeding ■ Paralysis, coma ■ ↓ Minute volume ■ Hypothermia ■ Hypothyroidism ■ Metabolic alkalosis

■ Medication: β-blockers, sedatives, muscle relaxants

  1. Adapted from [1, 8, 19, 25, 55]. Symbols: ↑, increase(d); ↓, decrease(d)