Using the %hrmax method, the optimal intensity threshold range for most of the population is

  1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet (London, England). 2012;380(9838):219–29.

    Article  Google Scholar 

  2. Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2.

    PubMed  Google Scholar 

  3. 2008 Physical Activity Guidelines Advisory Committee. 2018 physical activity guidelines advisory committee scientific report. Washington, DC: U.S. Department of Health and Human Services; 2018.

    Google Scholar 

  4. Ham SA, Kruger J, Tudor-Locke C. Participation by US adults in sports, exercise, and recreational physical activities. J Phys Act Health. 2009;6:1–10.

    Article  Google Scholar 

  5. Tudor-Locke C, Sisson SB, Collova T, Lee SM, Swan PD. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol. 2005;30(6):666–76.

    Article  Google Scholar 

  6. Peake JM, Kerr G, Sullivan JP. A critical review of consumer Wearables, Mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front Physiol. 2018;9:743.

    Article  Google Scholar 

  7. Tudor-Locke C, Han H, Aguiar EJ, et al. How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. Br J Sports Med. 2018;52(12):776–88.

    Article  Google Scholar 

  8. Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? for adults. Int J Behav Nutr Phys Activ. 2011;8:79.

    Article  Google Scholar 

  9. Saint-Maurice PF, Troiano RP, Bassett DR Jr, et al. Association of Daily Step Count and Step Intensity with Mortality among US adults. Jama. 2020;323(12):1151–60.

    Article  Google Scholar 

  10. Le Masurier GC, Sidman CL, Corbin CB. Accumulating 10,000 steps: does this meet current physical activity guidelines? Res Q Exerc Sport. 2003;74(4):389–94.

    Article  Google Scholar 

  11. Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  Google Scholar 

  12. Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci. 2002;20(11):873–99.

    Article  Google Scholar 

  13. Kujala UM, Pietilä J, Myllymäki T, et al. Physical activity: absolute intensity versus relative-to-fitness-level volumes. Med Sci Sports Exerc. 2017;49(3):474–81.

    Article  Google Scholar 

  14. Gigerenzer G, Gaissmaier W. Heuristic decision making. Annu Rev Psychol. 2011;62:451–82.

    Article  Google Scholar 

  15. Abel M, Hannon J, Mullineaux D, Beighle A. Determination of step rate thresholds corresponding to physical activity intensity classifications in adults. J Phys Act Health. 2011;8(1):45–51.

    Article  Google Scholar 

  16. Beets MW, Agiovlasitis S, Fahs CA, Ranadive SM, Fernhall B. Adjusting step count recommendations for anthropometric variations in leg length. J Sci Med Sport. 2010;13(5):509–12.

    Article  Google Scholar 

  17. Rowe DA, Welk GJ, Heil DP, et al. Stride rate recommendations for moderate intensity walking. Med Sci Sports Exerc. 2011;43(2):312–8.

    Article  Google Scholar 

  18. Marshall SJ, Levy SS, Tudor-Locke CE, et al. Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. Am J Prev Med. 2009;36(5):410–5.

    Article  Google Scholar 

  19. O'Brien MW, Kivell MJ, Wojcik WR, d'Entremont G, Kimmerly DS, Fowles JR. Step rate thresholds associated with moderate and vigorous physical activity in adults. Int J Environ Res Public Health. 2018;15(11)::2454.

  20. Tudor-Locke C, Aguiar EJ, Han H, et al. Walking cadence (steps/min) and intensity in 21-40 year olds: CADENCE-adults. Int J Behav Nutr Phys Activ. 2019;16(1):8.

    Article  Google Scholar 

  21. Tudor-Locke C, Ducharme SW, Aguiar EJ, et al. Walking cadence (steps/min) and intensity in 41 to 60-year-old adults: the CADENCE-adults study. Int J Behav Nutr Phys Activ. 2020;17(1):137.

    Article  Google Scholar 

  22. Abt G, Bray J, Myers T, Benson AC. Walking cadence required to elicit criterion moderate-intensity physical activity is moderated by fitness status. J Sports Sci. 2019;37(17):1989–95.

    Article  Google Scholar 

  23. American College of Sports Medicine. ACSM's guidelines for exercise testing and prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2018.

    Google Scholar 

  24. Georgiopoulou VV, Kalogeropoulos AP, Chowdhury R, et al. Exercise capacity, heart failure risk, and mortality in older adults: the health ABC study. Am J Prev Med. 2017;52(2):144–53.

    Article  Google Scholar 

  25. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S446–51 discussion S52–3.

    CAS  Article  Google Scholar 

  26. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    CAS  Article  Google Scholar 

  27. Expert WHO. Committee on physical status: the use and interpretation of anthropometry. In: Physical status : the use and interpretation of anthropometry : report of a WHO Expert Committee. Geneva: world health Organization; 1995.

    Google Scholar 

  28. Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8(4):283–98.

    CAS  Article  Google Scholar 

  29. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.

    CAS  Article  Google Scholar 

  30. Yin J, Tian L. Joint confidence region estimation for area under ROC curve and Youden index. Stat Med. 2014;33(6):985–1000.

    Article  Google Scholar 

  31. Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc. 1983;78(382):316–31.

    Article  Google Scholar 

  32. Diedrich FJ, Warren WH Jr. Why change gaits? Dynamics of the walk-run transition. J Exp Psychol Hum Percept Perform. 1995;21(1):183–202.

    CAS  Article  Google Scholar 

  33. Hansen EA, Kristensen LAR, Nielsen AM, Voigt M, Madeleine P. The role of stride frequency for walk-to-run transition in humans. Sci Rep. 2017;7(1):2010.

    Article  Google Scholar 

  34. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.

    Article  Google Scholar 

  35. Moore CC, Aguiar EJ, Gould ZR, Amalbert-Birriel MA, Ducharme SW. Letter to the editor regarding the article "walking cadence required to elicit criterion moderate-intensity physical activity is moderated by fitness status" by Abt et al. (2019). J Sports Sci. 2020;38(3):304–5.

    Article  Google Scholar 

  36. Consumer Technology Association Health and Fitness Technology Subcommittee. Physical activity monitoring for fitness Wearables: step counting. Arlington, VA: Consumer Technology Association; 2016.

    Google Scholar 

  37. de Man M, Vanderploeg E, Aimers N, Macmahon C, Wise L, Parrington L. Validity and inter-device reliability of dominant and non-dominant wrist worn activity trackers in suburban walking. Sensoria J Mind Brain Cult. 2016;12:40–46.

  38. Thiebaud RS, Funk MD, Patton JC, et al. Validity of wrist-worn consumer products to measure heart rate and energy expenditure. Digit Health. 2018;4:2055207618770322.

    PubMed  PubMed Central  Google Scholar 

  39. Moore CC, McCullough AK, Aguiar EJ, Ducharme SW, Tudor-Locke C. Toward harmonized treadmill-based validation of step-counting wearable technologies: a scoping review. J Phys Act Health. 2020:1–13.

  40. Serrano F, Slaght J, Senechal M, Duhamel T, Bouchard DR. Identification and prediction of the walking cadence required to reach moderate intensity using individually-determined relative moderate intensity in older adults. J Aging Phys Act. 2017;25(2):205–11.

    Article  Google Scholar 

  41. O'Brien MW, Kivell MJ, Wojcik WR, D'Entremont GR, Kimmerly DS, Fowles JR. Influence of anthropometrics on step-rate thresholds for moderate and vigorous physical activity in older adults: scientific modeling study. JMIR Aging. 2018;1(2):e12363.

    Article  Google Scholar 

  42. Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994;309(6947):102.

    CAS  Article  Google Scholar 


Page 2

   Age Groups   
Variable Group 1
(21–30 years, n = 37)
Group 2
(31–40 years, n = 40)
Group 3
(41–50 years, n = 40)
Group 4
(51–60 years, n = 39)
Sex (% female) 48.6 50.0 50.0 47.7
Age (years) 25.4 ± 3.1 35.1 ± 2.9 45.1 ± 2.9 55.4 ± 3.1
Height (cm) 172.2 ± 10.1 169.3 ± 8.4 170.9 ± 8.8 171.4 ± 9.6
Leg Length (cm) 80.4 ± 6.6 78.9 ± 5 80.6 ± 5.2 81 ± 5.3
Weight (kg) 70.8 ± 13.6 74.9 ± 14.3 76.7 ± 14.7 76.5 ± 13.4
BMI 23.7 ± 2.6 26 ± 3.7 26.2 ± 4.3 26 ± 3.6
BMI Classification (%)
 Normal 73 43 45 46
 Overweight 27 48 38 41
 Obese 0 10 18 13
Race/ethnicity (%)
 White 70.3 52.5 80 89.7
 African-American 2.7 2.5 5 0
 Hispanic 2.7 7.5 2.5 2.6
 Asian 13.5 27.5 2.5 0
 American Indian 0 2.5 0 0
 Other 2.7 2.5 5 2.6
 Unknown/No response 5.4 2.5 2.5 2.6
 More than one 2.7 2.5 2.5 2.6

  1. Values are means ± standard deviation or percentages. BMI Body Mass Index (kg/m2). BMI classifications: Normal or healthy weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), obese (≥ 30 kg/m2) [27]