15 . when is the administration of a volume expander indicated during newborn resuscitation?

1. Weiner G.M., Zaichkin J. Textbook of Neonatal Resuscitation. 8th ed. American Academy of Pediatrics; Itasca, IL, USA: 2021. [Google Scholar]

2. Lawn J.E., Blencowe H., Oza S., You D., Lee A.C., Waiswa P., Lalli M., Bhutta Z., Barros A.J., Christian P., et al. Every Newborn: Progress, priorities, and potential beyond survival. Lancet. 2014;384:189–205. doi: 10.1016/S0140-6736(14)60496-7. [PubMed] [CrossRef] [Google Scholar]

3. Foglia E.E., Weiner G., de Almeida M.F.B., Wyllie J., Wyckoff M.H., Rabi Y., Guinsburg R. Duration of Resuscitation at Birth, Mortality, and Neurodevelopment: A Systematic Review. Pediatrics. 2020;146:e20201449. doi: 10.1542/peds.2020-1449. [PubMed] [CrossRef] [Google Scholar]

4. Rainaldi A.M., Perlman J.M. Pathophysiology of birth asphyxia. Clin. Perinatol. 2016;43:409–422. doi: 10.1016/j.clp.2016.04.002. [PubMed] [CrossRef] [Google Scholar]

5. Wyckoff M.H., Wyllie J., Aziz K., de Almeida M.F., Fabres J., Fawke J., Guinsburg R., Hosono S., Isayama T., Kapadia V.S., et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2020;142:S185–S221. doi: 10.1161/CIR.0000000000000895. [PubMed] [CrossRef] [Google Scholar]

6. Finn D., Roehr C.C., Ryan C.A., Dempsey E.M. Optimising Intravenous Volume Resuscitation of the Newborn in the Delivery Room: Practical Considerations and Gaps in Knowledge. Neonatology. 2017;112:163–171. doi: 10.1159/000475456. [PubMed] [CrossRef] [Google Scholar]

7. Wyckoff M.H., Perlman J.M., Laptook A.R. Use of volume expansion during delivery room resuscitation in near-term and term infants. Pediatrics. 2005;115:950–955. doi: 10.1542/peds.2004-0913. [PubMed] [CrossRef] [Google Scholar]

8. Aziz K., Lee H.C., Escobedo M.B., Hoover A.V., Kamath-Rayne B.D., Kapadia V.S., Magid D.J., Niermeyer S., Schmolzer G.M., Szyld E., et al. Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142:S524–S550. doi: 10.1161/CIR.0000000000000902. [PubMed] [CrossRef] [Google Scholar]

9. Polglase G.R., Ong T., Hillman N.H. Cardiovascular Alterations and Multiorgan Dysfunction After Birth Asphyxia. Clin. Perinatol. 2016;43:469–483. doi: 10.1016/j.clp.2016.04.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. O’Donnell C.P., Kamlin C.O., Davis P.G., Carlin J.B., Morley C.J. Clinical assessment of infant colour at delivery. Arch. Dis. Child. Fetal Neonatal. Ed. 2007;92:F465–F467. doi: 10.1136/adc.2007.120634. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Yao A.C., Moinian M., Lind J. Distribution of blood between infant and placenta after birth. Lancet. 1969;2:871–873. doi: 10.1016/S0140-6736(69)92328-9. [PubMed] [CrossRef] [Google Scholar]

12. Robillard J.E., Weitzman R.E., Fisher D.A., Smith F.G. The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr. Res. 1979;13:606–610. doi: 10.1203/00006450-197905000-00006. [PubMed] [CrossRef] [Google Scholar]

13. Zanjani E.D., Peterson E.N., Gordon A.S., Washerman L.R. Erythropoietin production in the fetus: Role of the kidney and maternal anemia. J. Lab. Clin. Med. 1974;83:281–287. [PubMed] [Google Scholar]

14. Baylen B.G., Ogata H., Ikegami M., Jacobs H., Jobe A., Emmanouilides G.C. Left ventricular performance and contractility before and after volume infusion: A comparative study of preterm and full-term newborn lambs. Circulation. 1986;73:1042–1049. doi: 10.1161/01.CIR.73.5.1042. [PubMed] [CrossRef] [Google Scholar]

15. Wyckoff M., Garcia D., Margraf L., Perlman J., Laptook A. Randomized Trial of Volume Infusion During Resuscitation of Asphyxiated Neonatal Piglets. Pediatr. Res. 2007;61:415–420. doi: 10.1203/pdr.0b013e3180332c45. [PubMed] [CrossRef] [Google Scholar]

16. Mendler M.R., Schwarz S., Hechenrieder L., Kurth S., Weber B., Höfler S., Kalbitz M., Mayer B., Hummler H.D. Successful Resuscitation in a Model of Asphyxia and Hemorrhage to Test Different Volume Resuscitation Strategies. A Study in Newborn Piglets After Transition. Front. Pediatr. 2018;6:192. doi: 10.3389/fped.2018.00192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Sankaran D., Chandrasekharan P.K., Gugino S.F., Koenigsknecht C., Helman J., Nair J., Mathew B., Rawat M., Vali P., Nielsen L., et al. Randomised trial of epinephrine dose and flush volume in term newborn lambs. Arch. Dis. Child. Fetal Neonatal Ed. 2021;106:578–583. doi: 10.1136/archdischild-2020-321034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Sankaran D., Vali P., Chandrasekharan P., Chen P., Gugino S.F., Koenigsknecht C., Helman J., Nair J., Mathew B., Rawat M., et al. Effect of a Larger Flush Volume on Bioavailability and Efficacy of Umbilical Venous Epinephrine during Neonatal Resuscitation in Ovine Asphyxial Arrest. Children. 2021;8:464. doi: 10.3390/children8060464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Osborn A.D., Evans N.J. Early volume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syst. Rev. 2004;2004:CD002055. doi: 10.1002/14651858.CD002055.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Keir A., Froessler B., Stanworth S. QUESTION 2: Are intravenous fluid boluses beneficial in late preterm or term infants with suspected haemodynamic compromise? Arch. Dis. Child. 2016;101:201–202. doi: 10.1136/archdischild-2015-309182. [PubMed] [CrossRef] [Google Scholar]

21. Keir A.K., Karam O., Hodyl N., Stark M.J., Liley H.G., Shah P.S., Stanworth S.J., NeoBolus Study Group International, multicentre, observational study of fluid bolus therapy in neonates. J. Paediatr. Child. Health. 2019;55:632–639. doi: 10.1111/jpc.14260. [PubMed] [CrossRef] [Google Scholar]

22. Shalish W., Olivier F., Aly H., Sant’Anna G. Seminars in Fetal and Neonatal Medicine. Elsevier; Amsterdam, The Netherlands: 2017. Uses and Misuses of Albumin during Resuscitation and in the Neonatal Intensive Care Unit. [PubMed] [Google Scholar]

23. Piquereau J., Ventura-Clapier R. Maturation of Cardiac Energy Metabolism During Perinatal Development. Front. Physiol. 2018;9:959. doi: 10.3389/fphys.2018.00959. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Rios D.R., Lapointe A., Schmolzer G.M., Mohammad K., VanMeurs K.P., Keller R.L., Sehgal A., Lakshminrusimha S., Giesinger R.E. Hemodynamic optimization for neonates with neonatal encephalopathy caused by a hypoxic ischemic event: Physiological and therapeutic considerations. Semin. Fetal Neonatal Med. 2021;26:101277. doi: 10.1016/j.siny.2021.101277. [PubMed] [CrossRef] [Google Scholar]

25. Nestaas E., Støylen A., Brunvand L., Fugelseth D. Longitudinal strain and strain rate by tissue Doppler are more sensitive indices than fractional shortening for assessing the reduced myocardial function in asphyxiated neonates. Cardiol. Young. 2011;21:1–7. doi: 10.1017/S1047951109991314. [PubMed] [CrossRef] [Google Scholar]

26. Vrancken S.L., van Heijst A.F., de Boode W.P. Neonatal Hemodynamics: From Developmental Physiology to Comprehensive Monitoring. Front. Pediatr. 2018;6:87. doi: 10.3389/fped.2018.00087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Massaro A.N., Govindan R.B., Vezina G., Chang T., Andescavage N.N., Wang Y., Al-Shargabi T., Metzler M., Harris K., Plessis A.J.D. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. J. Neurophysiol. 2015;114:818–824. doi: 10.1152/jn.00353.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Oca M.J., Nelson M., Donn S.M. Randomized trial of normal saline versus 5% albumin for the treatment of neonatal hypotension. J. Perinatol. 2003;23:473–476. doi: 10.1038/sj.jp.7210971. [PubMed] [CrossRef] [Google Scholar]

29. Lynch S., Mullett M., Graeber J., Polak M. A comparison of albumin-bolus therapy versus normal saline-bolus therapy for hypotension in neonates. J. Perinatol. 2008;28:29–33. doi: 10.1038/sj.jp.7211846. [PubMed] [CrossRef] [Google Scholar]

30. Todd S.R., Malinoski D., Muller P.J., Schreiber M.A. Lactated Ringer’s is Superior to Normal Saline in the Resuscitation of Uncontrolled Hemorrhagic Shock. J. Trauma Acute Care Surg. 2007;62:636–639. doi: 10.1097/TA.0b013e31802ee521. [PubMed] [CrossRef] [Google Scholar]

31. Healey M.A., Davis R.E., Liu F.C., Loomis W.H., Hoyt D.B. Lactated Ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J. Trauma Acute Care Surg. 1998;45:894–899. doi: 10.1097/00005373-199811000-00010. [PubMed] [CrossRef] [Google Scholar]

32. Eisenhut M. Adverse effects of rapid isotonic saline infusion. Arch. Dis. Child. 2006;91:797. doi: 10.1136/adc.2006.100123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Bullivant E., Wilcox C., Welch W. Intrarenal vasoconstriction during hyperchloremia: Role of thromboxane. Am. J. Physiol.-Ren. Physiol. 1989;256:F152–F157. doi: 10.1152/ajprenal.1989.256.1.F152. [PubMed] [CrossRef] [Google Scholar]

34. Brill S.A., Stewart T.R., Brundage S.I., Schreiber M.A. Base deficit does not predict mortality when secondary to hyperchloremic acidosis. Shock. 2002;17:459–462. doi: 10.1097/00024382-200206000-00003. [PubMed] [CrossRef] [Google Scholar]

35. Linderkamp O., Versmold H.T., Messow-Zahn K., Müller-Holve W., Riegel K.P., Betke K. The effect of intra-partum and intra-uterine asphyxia on placental transfusion in premature and full-term infants. Eur. J. Pediatr. 1978;127:91–99. doi: 10.1007/BF00445764. [PubMed] [CrossRef] [Google Scholar]

36. Oh W., Omori K., Emmanouilides G.C., Phelps D.L. Placenta to lamb fetus transfusion in utero during acute hypoxia. Am. J. Obs. Gynecol. 1975;122:316–322. doi: 10.1016/0002-9378(75)90176-3. [PubMed] [CrossRef] [Google Scholar]

37. Yao A.C., Lind J. Blood volume in the asphyxiated term neonate. Biol Neonate. 1972;21:199–209. doi: 10.1159/000240508. [PubMed] [CrossRef] [Google Scholar]

38. Koo J., Katheria A.C., Polglase G. Seminars in Perinatology. WB Saunders; Philadelphia, PA, USA: 2022. A Newborn’s “Life Line”—A Review of Umbilical Cord Management Strategies; p. 151621. [PubMed] [Google Scholar]

39. Katheria A.C., Clark E., Yoder B., Schmölzer G.M., Law B.H.Y., El-Naggar W., Rittenberg D., Sheth S., Mohamed M.A., Martin C., et al. Umbilical cord milking in non-vigorous infants: A cluster-randomized crossover trial. Am. J. Obs. Gynecol. 2022 doi: 10.1016/j.ajog.2022.08.015. [PubMed] [CrossRef] [Google Scholar]

40. Katheria A., Reister F., Essers J., Mendler M., Hummler H., Subramaniam A., Carlo W., Tita A., Truong G., Davis-Nelson S., et al. Association of Umbilical Cord Milking vs. Delayed Umbilical Cord Clamping with Death or Severe Intraventricular Hemorrhage Among Preterm Infants. JAMA. 2019;322:1877–1886. doi: 10.1001/jama.2019.16004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Peesay M. Nuchal cord and its implications. Matern Health Neonatol. Perinatol. 2017;3:28. doi: 10.1186/s40748-017-0068-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Henry E., Andres R.L., Christensen R.D. Neonatal outcomes following a tight nuchal cord. J. Perinatol. 2013;33:231–234. doi: 10.1038/jp.2012.79. [PubMed] [CrossRef] [Google Scholar]

43. Larson J.D., Rayburn W.F., Crosby S., Thurnau G.R. Multiple nuchal cord entanglements and intrapartum complications. Am. J. Obstet. Gynecol. 1995;173:1228–1231. doi: 10.1016/0002-9378(95)91359-9. [PubMed] [CrossRef] [Google Scholar]