Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

Como vimos anteriormente, Bohr aperfeiçoou o modelo atômico de Rutherford com base em formulações teóricas. Uma delas é esta:

Os elétrons estão distribuídos de acordo com suas distâncias em relação ao núcleo, descrevendo órbitas circulares ao redor deste sem ganhar ou perder energia.

Assim, há várias órbitas circulares em um átomo, e cada uma delas tem um determinado valor energético. Dependendo do número de elétrons que possui, o átomo pode apresentar vários níveis eletrônicos ou camadas de energia.

Esses níveis eletrônicos, conforme o número de elementos químicos conhecidos, são numerados de 1 a 7 ou representados pelas letras K, L, M, N, O, P e Q, a partir do nível mais interno, que é o mais próximo do núcleo.

Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

Bohr afirmou também que:

Ao receber energia o elétron pode saltar da camada em que está para uma camada mais externa; quando cessa a fonte de energia, ela retorna para a camada de origem, liberando sob a forma de luz a energia anteriormente recebida.

Pela observação das fotos seguir, você verá que a chama apresenta cores diferentes.

Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?
 
Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?
 
Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

O que se pode constatar ao observar as diferentes cores apresentadas nas fotos?

Isso ocorre porque os elétrons dos diferentes elementos químicos atingem camadas externas também diferentes ao ganhar energia. A emissão da luz depende da diferença de energia entre a camada eletrônica em que o se encontrava e a camada para a qual “saltou” ao receber energia.

A energia em forma de luz é emitida quando o elétron retorna à sua camada eletrônica inicial, e a cor da luz dependerá de cada elemento químico.

Como a luz visível é formada por ondas eletromagnéticas distribuídas numa certa faixa de frequências, e a frequências da onda corresponde a quantidade de energia que ela transporta, temos que, a energia emitida pelo elétron é percebida por nós na forma de luz com a cor determinada pela quantidade de energia liberada.

Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

Isso explica, por exemplo, as cores dos fogos de artifício, já que eles são produzidos com adição de substâncias que emitem luz quando aquecidas.

Como vimos, de acordo com a teoria de Bohr, ao receber energia um elétron pode saltar para uma camada mais externa, de maior energia.

Atualmente, sabemos que, se a quantidade de energia fornecida a um elétron for muito elevada, esse elétron poderá saltar para fora da área considerada eletrosfera. Em consequência, o átomo deixa de apresentar igual número de prótons e elétrons, deixando, portanto de ser neutro.

Da mesma forma que se podem perder elétrons, o átomo também pode receber elétrons, ocorrendo a quebra de neutralidade de cargas elétricas.

Nos dois exemplos anteriores, foi possível verificar que, com a perda ou com o ganho de elétrons, os átomos deixaram de apresentar carga neutra. Quando isso ocorre, o átomo recebe uma nova denominação: são chamados de íons.

Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?
 
Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

Quando o átomo ganha energia o elétron salta para uma camada mais externa Segundo Bohr?

Como referenciar: "Eletrosfera e níveis energéticos" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2022. Consultado em 20/08/2022 às 11:41. Disponível na Internet em https://www.sobiologia.com.br/conteudos/Oitava_quimica/atomo8.php

  1. Home
  2. Estudos
  3. Química

O ÁTOMO DE BOHR

Para explicar a estabilidade do átomo, o físico dinamarquês Niels Bohr admitiu que um gás emite luz quando uma corrente elétrica passa através deste, devido aos elétrons em seus átomos primeiro absorverem energia da eletricidade e posteriormente liberarem aquela energia na forma de luz.


Para explicar a estabilidade do átomo, o físico dinamarquês Niels Bohr admitiu que um gás emite luz quando uma corrente elétrica passa através deste, devido aos elétrons em seus átomos primeiro absorverem energia da eletricidade e posteriormente liberarem aquela energia na forma de luz.

Ele imaginou que a radiação emitida é limitada para um certo comprimento de onda. Deduziu então que, em um átomo, um elétron não está livre para ter qualquer quantidade de energia. Ele pode ter somente certas quantidades de energia, isto é, a energia de um elétrons em um átomo é quantizada.

No século XIX acreditava-se que a luz e outras formas de radiação eletromagnética eram fluxos contínuos de energia. Mas no início do século XX, os físicos alemães Max Planck e Albert Einstein mostraram independentemente que todas as radiações eletromagnéticas comportavam-se como se fossem compostas por minúsculos pacotes de energia denominados fótons. Cada fóton tem uma energia proporcional à frequência da radiação.

          Onde::

          h = 6,63 x 10-34 J.s (constante de Planck)

          u = frequência

          Já vimos que a frequência, o comprimento de onda e a velocidade da luz estão relacionados pela equação c = u l, que, substituindo, obtemos:

Desta equação podemos ver que um fóton de energia eletromagnética tem sua energia e comprimento de onda relacionados em uma proporcionalidade inversa (lembre-se: h e c são constantes). Segundo Bohr, cada elétron pode Ter somente um valor de energia.

Ele estabeleceu que um átomo tem um conjunto de energias quantizadas, ou níveis de energia, disponível para seus elétrons e cada nível de energia tem uma quantidade máxima de elétrons. Um átomo está normalmente em seu estado fundamental, no qual todos os seus elétrons estão nos níveis de energia mais baixos que lhes são disponíveis.

Bohr conseguiu calcular a energia absorvida numa transição eletrônica no átomo de hidrogênio. Para tanto utilizou a seguinte equação: (o sinal negativo indica que a energia é absorvida)

          Onde:

          z = número atômico do elemento

          n = 6,02 x 1023 (número de Avogadro)

          O raio atômico também pode ser calculado pela equação:

          Onde:

          Ao = 0,529 x 10-10 m (Raio de Bohr - constante)

Estas equações podem ser aplicadas a qualquer átomo ou íon hidrogenóide, isto é, com apenas um elétron, mas não se aplicam a outros elementos com mais de um elétron. Isto porque as repulsões inter-eletrônicas teriam que ser levadas em consideração nas transições eletrônicas e no tamanho do raio atômico.

Sabia-se no século XIX que a luz exercia efeito sobre alguns metais, removendo elétrons de uma chapa metálica lisa no vácuo. Esse fenômeno ficou conhecido como efeito fotoelétrico. Quando um átomo absorve energia de uma fonte externa, alguns de seus elétrons ganham energia e são elevados a um nível de energia maior. Esse fenômeno é chamado de salto quântico.

Diz-se que o átomo se encontra num estado excitado. Alguns dos níveis de energia mais baixos ficam livres e, assim, um elétron pode cair de um nível mais alto para um nível de energia mais baixo. Quando Isso acontece, a energia absorvida pelo elétron é liberada na forma de fóton de radiação eletromagnética, com um comprimento de onda diferente do original.

Esse fenômeno é chamado de fluorescência. Muitas substâncias ficam fluorescentes quando atingida por luz ultravioleta, a qual não podemos enxergar - vemos apenas a luz de baixa energia produzida pela fluorescência.

O fóton, portanto, corresponde à diferença entre dois níveis de energia de um elétron, quando este realiza um salto quântico. Uma vez que a energia do fóton é quantizada, o comprimento de onda também deve ser quantizado, ou seja, só pode um par específico de níveis em um ter um valor discreto e fixo. Cada transição eletrônica entre átomo contribui para a produção de uma linha individual no espectro daquele elemento.

O ponto mais fraco da teoria atômica de Bohr reside na sua concepção de um modelo atômico planetário modificado no qual cada nível quantizado de energia corresponde a uma órbita eletrônica circular, específica e estável, com raio quantizado. Outros mais tarde estenderam o modelo de Bohr a órbitas elípticas. Por razões que se tornarão evidentes adiante, não falaremos mais em elétrons percorrendo órbitas ao redor do núcleo.

Como Bohr encarou o fato de que os elétrons não irradiam energia continuamente, o que causaria o colapso no átomo? Em primeiro lugar, desde que a energia de um elétron é quantizada, a radiação contínua não é possível, pois a energia do elétron teria de variar continuamente para que o elétron fosse capaz de perder energia continuamente.

Em segundo lugar, Bohr foi capaz de mostrar que a menor energia utilizável para um elétron não é zero. Ele interpretou isto como significando que há um tamanho mínimo permitido para a órbita de um elétron.

Embora os conceitos de órbitas de Bohr sejam incorretos, acreditamos hoje que há realmente uma energia mínima constante, maior do que zero, que um elétron pode ter. De acordo com Bohr, os átomos não entram em colapso porque eles não podem ter menos energia do que em seu estado fundamental.

Quando um elétron ganha energia ele salta para uma camada mais externa?

Ao receber energia o elétron pode saltar da camada em que está para uma camada mais externa; quando cessa a fonte de energia, ela retorna para a camada de origem, liberando sob a forma de luz a energia anteriormente recebida.

Quando o átomo recebe energia o elétron salta de uma órbita mais interna para uma mais externa?

III- Ao receber energia, o elétron pode saltar para outra órbita, mais energética. Dessa forma, o átomo fica instável, pois o elétron tende a voltar à sua orbita original. Quando o átomo volta à sua órbita original, ele devolve a energia que foi recebida em forma de luz ou calor.

Que ocorre quando um elétron ganha energia de fora do átomo?

Esse fenômeno ficou conhecido como efeito fotoelétrico. Quando um átomo absorve energia de uma fonte externa, alguns de seus elétrons ganham energia e são elevados a um nível de energia maior. Esse fenômeno é chamado de salto quântico.

Quando absorve energia o nível de energia do elétron aumenta saltando para uma camada mais externa por outro lado ela diminui quando o elétron emite energia?

Quando absorve energia, o nível de energia do elétron aumenta saltando para uma camada mais externa. Por outro lado, ela diminui quando o elétron emite energia. Os níveis de energia, ou camadas eletrônicas, acomodam um número determinado de elétrons e são designados pelas letras: K, L, M, N, O, P, Q.