What happens when two solutions separated by a selectively permeable

A water solution that contains nutrients, wastes, gases, salts and other substances surrounds cells. This is the external environment of a cell. The cell’s outer surface of the plasma membrane is in contact with this external environment, while the inner surface is in contact with the cytoplasm. Thus, the plasma membrane controls what enters and leaves the cell.

The membrane permits the passage of some materials, but not all. The cell membrane is said to be selectively permeable. Small molecules, for example, may pass through the membrane. If no energy is required for substances to pass through the membrane, the process is called passive transport. We will discuss two examples of passive transport in this tutorial: diffusion and osmosis.

Diffusion
Although you may not know what diffusion is, you have experienced the process. Can you remember walking into the front door of your home and smelling a pleasant aroma coming from the kitchen? It was diffusion of molecules from the kitchen to the front door of the house that allowed you to detect the odors.

Diffusion is defined as the net movement of molecules from an area of greater concentration to an area of lesser concentration.

The molecules in a gas, a liquid or a solid are in constant motion due to their kinetic energy. Molecules are in constant movement and collide with each other. These collisions cause the molecules to move in random directions. Over time, however, more molecules will be propelled into the less concentrated area. Thus, the net movement of molecules is always from more tightly packed areas to less tightly packed areas. Many things can diffuse. Odors diffuse through the air, salt diffuses through water and nutrients diffuse from the blood to the body tissues.

This spread of particles through random motion from an area of high concentration to an area of lower concentration is known as diffusion. This unequal distribution of molecules is called a concentration gradient. Once the molecules become uniformly distributed, dynamic equilibrium exists. The equilibrium is said to be dynamic because molecules continue to move, but despite this change, there is no net change in concentration over time. Both living and nonliving systems experience the process of diffusion. In living systems, diffusion is responsible for the movement of a large number of substances, such as gases and small uncharged molecules, into and out of cells.

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{1}\). (CC BY-NC-SA)

Osmosis

Osmosis is a specific type of diffusion; it is the passage of water from a region of high water concentration through a semi-permeable membrane to a region of low water concentration. 

Semi-permeable membranes are very thin layers of material which allow some things to pass through them, but prevent other things from passing through. Cell membranes are an example of semi-permeable membranes. Cell membranes allow small molecules such as oxygen, water carbon dioxide and glucose to pass through, but do not allow larger molecules like sucrose, proteins and starch to enter the cell directly.

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{2}\). (CC BY-NC-SA)

Example: If there was a semi-permeable membrane with more water molecules on one side as there were on the other, water molecules would flow from the side with a high concentration of water to the side with the lower concentration of water. This would continue until the concentration of water on both sides of the membrane were equal (dynamic equilibrium is established).

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{3}\). (CC BY-NC-SA)

Osmotic Pressure
Adding sugars to water will result in a decrease in the water concentration because the sugar molecules displace the water molecules. 

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{4}\). osmotic pressure (CC BY-NC-SA; LadyOfHats)

If the two containers are connected, but separated by a semi-permeable membrane, water molecules would flow from the area of high water concentration (the solution that does not contain any sugar) to the area of lower water concentration (the solution that contains sugar). 

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{5}\). osmotic pressure (CC BY-NC-SA; LadyOfHats)

This movement of water would continue until the water concentration on both sides of the membrane is equal, and will result in a change in volume of the two sides. The side that contains sugar will end up with a larger volume.

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{6}\). osmotic pressure (CC BY-NC-SA; LadyOfHats)

Water solutions are very important in biology. When water is mixed with other molecules this mixture is called a solution. Water is the solvent and the dissolved substance is the solute. A solution is characterized by the solute. For example, water and sugar would be characterized as a sugar solution.

The classic example used to demonstrate osmosis and osmotic pressure is to immerse red blood cells into sugar solutions of various concentrations. There are three possible relationships that cells can encounter when placed into a sugar solution.

1. The concentration of solute in the solution can be equal to the concentration of solute in cells. In this situation the cell is in an isotonic solution (iso = equal or the same as normal). A red blood cell will retain its normal shape in this environment as the amount of water entering the cell is the same as the amount leaving the cell.

2. The concentration of solute in the solution can be greater than the concentration of solute in the cells. This cell is described as being in a hypertonic solution (hyper = greater than normal). In this situation, a red blood will appear to shrink as the water flows out of the cell and into the surrounding environment.

3. The concentration of solute in the solution can be less than the concentration of solute in the cells. This cell is in a hypotonic solution (hypo = less than normal). A red blood cell in this environment will become visibly swollen and potentially rupture as water rushes into the cell.

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{4}\). (CC BY-NC-SA)

What happens when two solutions separated by a selectively permeable

Figure \(\PageIndex{4}\). (CC BY-NC-SA)

Large quantities of water molecules constantly move across cell membranes by simple diffusion, often facilitated by movement through membrane proteins, including aquaporins. In general, net movement of water into or out of cells is negligible. For example, it has been estimated that an amount of water equivalent to roughly 100 times the volume of the cell diffuses across the red blood cell membrane every second; the cell doesn't lose or gain water because equal amounts go in and out.

There are, however, many cases in which net flow of water occurs across cell membranes and sheets of cells. An example of great importance to you is the secretion of and absorption of water in your small intestine. In such situations, water still moves across membranes by simple diffusion, but the process is important enough to warrant a distinct name - osmosis.

Osmosis and Net Movement of Water

Osmosis is the net movement of water across a selectively permeable membrane driven by a difference in solute concentrations on the two sides of the membrane. A selectively permiable membrane is one that allows unrestricted passage of water, but not solute molecules or ions.

Different concentrations of solute molecules leads to different concentrations of free water molecules on either side of the membrane. On the side of the membrane with higher free water concentration (i.e. a lower concentration of solute), more water molecules will strike the pores in the membrane in a give interval of time. More strikes equates to more molecules passing through the pores, which in turn results in net diffusion of water from the compartment with high concentration of free water to that with low concentration of free water.

The key to remember about osmosis is that water flows from the solution with the lower solute concentration into the solution with higher solute concentration. This means that water flows in response to differences in molarity across a membrane. The size of the solute particles does not influence osmosis. Equilibrium is reached once sufficient water has moved to equalize the solute concentration on both sides of the membrane, and at that point, net flow of water ceases. Here is a simple example to illustrate these principles:

Two containers of equal volume are separated by a membrane that allows free passage of water, but totally restricts passage of solute molecules. Solution A has 3 molecules of the protein albumin (molecular weight 66,000) and Solution B contains 15 molecules of glucose (molecular weight 180). Into which compartment will water flow, or will there be no net movement of water? [ answer ]
What happens when two solutions separated by a selectively permeable

Additional examples are provided on how to determine which direction water will flow in different circumstances.

Tonicity

When thinking about osmosis, we are always comparing solute concentrations between two solutions, and some standard terminology is commonly used to describe these differences:

  • Isotonic: The solutions being compared have equal concentration of solutes.
  • Hypertonic: The solution with the higher concentration of solutes.
  • Hypotonic: The solution with the lower concentration of solutes.
What happens when two solutions separated by a selectively permeable

In the examples above, Solutions A and B are isotonic (with each other), Solutions A and B are both hypertonic compared to Solution C, and Solution C is hypotonic relative to Solutions A and B.

Diffusion of water across a membrane generates a pressure called osmotic pressure. If the pressure in the compartment into which water is flowing is raised to the equivalent of the osmotic pressure, movement of water will stop. This pressure is often called hydrostatic ('water-stopping') pressure. The term osmolarity is used to describe the number of solute particles in a volume of fluid. Osmoles are used to describe the concentration in terms of number of particles - a 1 osmolar solution contains 1 mole of osmotically-active particles (molecules and ions) per liter.

The classic demonstration of osmosis and osmotic pressure is to immerse red blood cells in solutions of varying osmolarity and watch what happens. Blood serum is isotonic with respect to the cytoplasm, and red cells in that solution assume the shape of a biconcave disk. To prepare the images shown below, red cells from your intrepid author were suspended in three types of solutions:

  • Isotonic - the cells were diluted in serum: Note the beautiful biconcave shape of the cells as they circulate in blood.
  • Hypotonic - the cells in serum were diluted in water: At 200 milliosmols (mOs), the cells are visibly swollen and have lost their biconcave shape, and at 100 mOs, most have swollen so much that they have ruptured, leaving what are called red blood cell ghosts. In a hypotonic solution, water rushes into cells.
  • Hypertonic - A concentrated solution of NaCl was mixed with the cells and serum to increase osmolarity: At 400 mOs and especially at 500 mOs, water has flowed out of the cells, causing them to collapse and assume the spiky appearance you see.
What happens when two solutions separated by a selectively permeable
What happens when two solutions separated by a selectively permeable

Predict what would happen if you mixed sufficient water with the 500 mOs sample shown above to reduce its osmolarity to about 300 mOs.

Calculating Osmotic and Hydrostatic Pressure

The flow of water across a membrane in response to differing concentrations of solutes on either side - osmosis - generates a pressure across the membrane called osmotic pressure. Osmotic pressure is defined as the hydrostatic pressure required to stop the flow of water, and thus, osmotic and hydrostatic pressures are, for all intents and purposes, equivalent. The membrane being referred to here can be an artifical lipid bilayer, a plasma membrane or a layer of cells.

The osmotic pressure P of a dilute solution is approximated by the following:

P = RT (C1 + C2 + .. + Cn)

where R is the gas constant (0.082 liter-atmosphere/degree-mole), T is the absolute temperature, and C1 ... Cn are the molar concentrations of all solutes (ions and molecules).

Similarly, the osmotic pressure across of membrane separating two solutions is:

P = RT (ΔC)

where ΔC is the difference in solute concentration between the two solutions. Thus, if the membrane is permeable to water and not solutes, osmotic pressure is proportional to the difference in solute concentration across the membrane (the proportionality factor is RT).

Advanced and Supplemental Topics

Send comments to