Topically applied agents that inhibit growth of bacteria are

1. Wysocki AB. 1999. Skin anatomy, physiology, and pathophysiology. Nurs Clin North Am 34:777–797. [PubMed] [Google Scholar]

2. Findley K, Grice EA. 2014. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog 10:e1004436. doi: 10.1371/journal.ppat.1004436. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Grice EA. 2015. The intersection of microbiome and host at the skin interface: genomic- and metagenomic-based insights. Genome Res 25:1514–1520. doi: 10.1101/gr.191320.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Hersh AL, Chambers HF, Maselli JH, Gonzales R. 2008. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med 168:1585–1591. doi: 10.1001/archinte.168.14.1585. [PubMed] [CrossRef] [Google Scholar]

5. Septimus EJ, Schweizer ML. 2016. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev 29:201–222. doi: 10.1128/CMR.00049-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. McNamara PJ, Levy SB. 2016. Triclosan: an instructive tale. Antimicrob Agents Chemother 60:7015–7016. [PMC free article] [PubMed] [Google Scholar]

7. Kampf G. 2016. Acquired resistance to chlorhexidine—is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect 94:213–227. doi: 10.1016/j.jhin.2016.08.018. [PubMed] [CrossRef] [Google Scholar]

8. Health and Social Care Information Centre. 2015. Prescription cost analysis, England—2015. http://content.digital.nhs.uk/catalogue/PUB20200.

9. Lapolla WJ, Levender MM, Davis SA, Yentzer BA, Williford PM, Feldman SR. 2011. Topical antibiotic trends from 1993 to 2007: use of topical antibiotics for non-evidence-based indications. Dermatol Surg 37:1427–1433. doi: 10.1111/j.1524-4725.2011.02122.x. [PubMed] [CrossRef] [Google Scholar]

10. Williamson D, Ritchie SR, Best E, Upton A, Leversha A, Smith A, Thomas MG. 2015. A bug in the ointment: topical antimicrobial usage and resistance in New Zealand. N Z Med J 128:103–109. [PubMed] [Google Scholar]

11. Hartman-Adams H, Banvard C, Juckett G. 2014. Impetigo: diagnosis and treatment. Am Fam Physician 90:229–235. [PubMed] [Google Scholar]

12. Koning S, van der Sande R, Verhagen AP, van Suijlekom-Smit LW, Morris AD, Butler CC, Berger M, van der Wouden JC. 2012. Interventions for impetigo. Cochrane Database Syst Rev 1:CD003261. doi: 10.1002/14651858.CD003261.pub3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Bowen AC, Mahe A, Hay RJ, Andrews RM, Steer AC, Tong SY, Carapetis JR. 2015. The global epidemiology of impetigo: a systematic review of the population prevalence of impetigo and pyoderma. PLoS One 10:e0136789. doi: 10.1371/journal.pone.0136789. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Koning S, van Suijlekom-Smit LW, Nouwen JL, Verduin CM, Bernsen RM, Oranje AP, Thomas S, van der Wouden JC. 2002. Fusidic acid cream in the treatment of impetigo in general practice: double blind randomised placebo controlled trial. BMJ 324:203–206. doi: 10.1136/bmj.324.7331.203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Christensen OB, Anehus S. 1994. Hydrogen peroxide cream: an alternative to topical antibiotics in the treatment of impetigo contagiosa. Acta Derm Venereol 74:460–462. [PubMed] [Google Scholar]

16. Vogel A, Lennon D, Best E, Leversha A. 2016. Where to from here? The treatment of impetigo in children as resistance to fusidic acid emerges N Z Med J 129:77–83. [PubMed] [Google Scholar]

17. Gould L, Abadir P, Brem H, Carter M, Conner-Kerr T, Davidson J, DiPietro L, Falanga V, Fife C, Gardner S, Grice E, Harmon J, Hazzard WR, High KP, Houghton P, Jacobson N, Kirsner RS, Kovacs EJ, Margolis D, McFarland Horne F, Reed MJ, Sullivan DH, Thom S, Tomic-Canic M, Walston J, Whitney J, Williams J, Zieman S, Schmader K. 2015. Chronic wound repair and healing in older adults: current status and future research. Wound Repair Regen 23:1–13. doi: 10.1111/wrr.12245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Graham ID, Harrison MB, Nelson EA, Lorimer K, Fisher A. 2003. Prevalence of lower-limb ulceration: a systematic review of prevalence studies. Adv Skin Wound Care 16:305–316. doi: 10.1097/00129334-200311000-00013. [PubMed] [CrossRef] [Google Scholar]

19. Norman G, Dumville JC, Moore ZE, Tanner J, Christie J, Goto S. 2016. Antibiotics and antiseptics for pressure ulcers. Cochrane Database Syst Rev 4:CD011586. doi: 10.1002/14651858.CD011586.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Raghavan P, Raza WA, Ahmed YS, Chamberlain MA. 2003. Prevalence of pressure sores in a community sample of spinal injury patients. Clin Rehabil 17:879–884. doi: 10.1191/0269215503cr692oa. [PubMed] [CrossRef] [Google Scholar]

21. VanGilder C, Amlung S, Harrison P, Meyer S. 2009. Results of the 2008-2009 International Pressure Ulcer Prevalence Survey and a 3-year, acute care, unit-specific analysis. Ostomy Wound Manage 55:39–45. [PubMed] [Google Scholar]

22. Moore Z, Johansen E, van Etten M. 2013. A review of PU risk assessment and prevention in Scandinavia, Iceland and Ireland (part II). J Wound Care 22:423–424, 426–428, 430–431. doi: 10.12968/jowc.2013.22.8.423. [PubMed] [CrossRef] [Google Scholar]

23. Moore Z, Johanssen E, van Etten M. 2013. A review of PU prevalence and incidence across Scandinavia, Iceland and Ireland (part I). J Wound Care 22:361–362, 364–368. doi: 10.12968/jowc.2013.22.7.361. [PubMed] [CrossRef] [Google Scholar]

24. Cutting KF, White RJ. 2005. Criteria for identifying wound infection—revisited. Ostomy Wound Manage 51:28–34. [PubMed] [Google Scholar]

25. Cutting KF, White RJ, Mahoney P. 2013. Wound infection, dressings and pain, is there a relationship in the chronic wound? Int Wound J 10:79–86. doi: 10.1111/j.1742-481X.2012.00947.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Howell-Jones RS, Wilson MJ, Hill KE, Howard AJ, Price PE, Thomas DW. 2005. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 55:143–149. doi: 10.1093/jac/dkh513. [PubMed] [CrossRef] [Google Scholar]

27. Schmidt K, Debus ES, St Jessberger, Ziegler U, Thiede A. 2000. Bacterial population of chronic crural ulcers: is there a difference between the diabetic, the venous, and the arterial ulcer? Vasa 29:62–70. doi: 10.1024/0301-1526.29.1.62. [PubMed] [CrossRef] [Google Scholar]

28. Schraibman IG. 1990. The significance of beta-haemolytic streptococci in chronic leg ulcers. Ann R Coll Surg Engl 72:123–124. [PMC free article] [PubMed] [Google Scholar]

29. Trengove NJ, Stacey MC, McGechie DF, Mata S. 1996. Qualitative bacteriology and leg ulcer healing. J Wound Care 5:277–280. doi: 10.12968/jowc.1996.5.6.277. [PubMed] [CrossRef] [Google Scholar]

30. Abbas M, Uckay I, Lipsky BA. 2015. In diabetic foot infections antibiotics are to treat infection, not to heal wounds. Expert Opin Pharmacother 16:821–832. doi: 10.1517/14656566.2015.1021780. [PubMed] [CrossRef] [Google Scholar]

31. National Institute of Health and Clinical Excellence (NICE). 2014. Pressure ulcers: prevention and management of pressure ulcers. Clinical guideline 179. NICE, London, United Kingdom: http://www.nice.org.uk/guidance/cg179/. [Google Scholar]

32. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R. 2014. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev 1:CD003557. doi: 10.1002/14651858.CD003557.pub5. [PubMed] [CrossRef] [Google Scholar]

33. Nisi G, Brandi C, Grimaldi L, Calabro M, D'Aniello C. 2005. Use of a protease-modulating matrix in the treatment of pressure sores. Chir Ital 57:465–468. [PubMed] [Google Scholar]

34. Kaya AZ, Turani N, Akyuz M. 2005. The effectiveness of a hydrogel dressing compared with standard management of pressure ulcers. J Wound Care 14:42–44. doi: 10.12968/jowc.2005.14.1.26726. [PubMed] [CrossRef] [Google Scholar]

35. World Health Organization (WHO). 2006. Facts about injuries: burns. WHO and International Society for Burns Injuries, Geneva, Switzerland. [Google Scholar]

36. Gibran NS, Heimbach DM. 2000. Current status of burn wound pathophysiology. Clin Plast Surg 27:11–22. [PubMed] [Google Scholar]

37. Church D, Elsayed S, Reid O, Winston B, Lindsay R. 2006. Burn wound infections. Clin Microbiol Rev 19:403–434. doi: 10.1128/CMR.19.2.403-434.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Dai T, Huang YY, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR. 2010. Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5:124–151. doi: 10.2174/157489110791233522. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Sharma BR. 2007. Infection in patients with severe burns: causes and prevention thereof. Infect Dis Clin North Am 21:745–759. doi: 10.1016/j.idc.2007.06.003. [PubMed] [CrossRef] [Google Scholar]

40. Sevgi M, Toklu A, Vecchio D, Hamblin MR. 2013. Topical antimicrobials for burn infections—an update. Recent Pat Antiinfect Drug Discov 8:161–197. doi: 10.2174/15748898113089990001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Monafo WW, West MA. 1990. Current treatment recommendations for topical burn therapy. Drugs 40:364–373. doi: 10.2165/00003495-199040030-00004. [PubMed] [CrossRef] [Google Scholar]

42. Barajas-Nava LA, Lopez-Alcalde J, Roque i Figuls M, Sola I, Bonfill Cosp X. 2013. Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst Rev 6:CD008738. doi: 10.1002/14651858.CD008738.pub2. [PubMed] [CrossRef] [Google Scholar]

43. Barret JP, Dziewulski P, Ramzy PI, Wolf SE, Desai MH, Herndon DN. 2000. Biobrane versus 1% silver sulfadiazine in second-degree pediatric burns. Plast Reconstr Surg 105:62–65. doi: 10.1097/00006534-200001000-00010. [PubMed] [CrossRef] [Google Scholar]

44. Bugmann P, Taylor S, Gyger D, Lironi A, Genin B, Vunda A, La Scala G, Birraux J, Le Coultre C. 1998. A silicone-coated nylon dressing reduces healing time in burned paediatric patients in comparison with standard sulfadiazine treatment: a prospective randomized trial. Burns 24:609–612. doi: 10.1016/S0305-4179(98)00095-3. [PubMed] [CrossRef] [Google Scholar]

45. Caruso DM, Foster KN, Blome-Eberwein SA, Twomey JA, Herndon DN, Luterman A, Silverstein P, Antimarino JR, Bauer GJ. 2006. Randomized clinical study of Hydrofiber dressing with silver or silver sulfadiazine in the management of partial-thickness burns. J Burn Care Res 27:298–309. doi: 10.1097/01.BCR.0000216741.21433.66. [PubMed] [CrossRef] [Google Scholar]

46. Gerding RL, Emerman CL, Effron D, Lukens T, Imbembo AL, Fratianne RB. 1990. Outpatient management of partial-thickness burns: Biobrane versus 1% silver sulfadiazine. Ann Emerg Med 19:121–124. doi: 10.1016/S0196-0644(05)81793-7. [PubMed] [CrossRef] [Google Scholar]

47. Gerding RL, Imbembo AL, Fratianne RB. 1988. Biosynthetic skin substitute vs. 1% silver sulfadiazine for treatment of inpatient partial-thickness thermal burns. J Trauma 28:1265–1269. doi: 10.1097/00005373-198808000-00022. [PubMed] [CrossRef] [Google Scholar]

48. Gotschall CS, Morrison MI, Eichelberger MR. 1998. Prospective, randomized study of the efficacy of Mepitel on children with partial-thickness scalds. J Burn Care Rehabil 19:279–283. [PubMed] [Google Scholar]

49. Hosseini SN, Karimian A, Mousavinasab SN, Rahmanpour H, Yamini M, Zahmatkesh SH. 2009. Xenoderm versus 1% silver sulfadiazine in partial-thickness burns. Asian J Surg 32:234–239. doi: 10.1016/S1015-9584(09)60400-0. [PubMed] [CrossRef] [Google Scholar]

50. Muangman P, Chuntrasakul C, Silthram S, Suvanchote S, Benjathanung R, Kittidacha S, Rueksomtawin S. 2006. Comparison of efficacy of 1% silver sulfadiazine and Acticoat for treatment of partial-thickness burn wounds. J Med Assoc Thai 89:953–958. [PubMed] [Google Scholar]

51. Noordenbos J, Dore C, Hansbrough JF. 1999. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil 20:275–281. [PubMed] [Google Scholar]

52. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, Keohane C, Denham CR, Bates DW. 2013. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 173:2039–2046. doi: 10.1001/jamainternmed.2013.9763. [PubMed] [CrossRef] [Google Scholar]

53. Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, Kaye KS. 2014. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:605–627. doi: 10.1086/676022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Schweizer ML, Chiang HY, Septimus E, Moody J, Braun B, Hafner J, Ward MA, Hickok J, Perencevich EN, Diekema DJ, Richards CL, Cavanaugh JE, Perlin JB, Herwaldt LA. 2015. Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip, or knee surgery. JAMA 313:2162–2171. doi: 10.1001/jama.2015.5387. [PubMed] [CrossRef] [Google Scholar]

55. McHugh SM, Collins CJ, Corrigan MA, Hill AD, Humphreys H. 2011. The role of topical antibiotics used as prophylaxis in surgical site infection prevention. J Antimicrob Chemother 66:693–701. doi: 10.1093/jac/dkr009. [PubMed] [CrossRef] [Google Scholar]

56. Heal CF, Banks JL, Lepper PD, Kontopantelis E, van Driel ML. 2016. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst Rev 11:CD011426. [PMC free article] [PubMed] [Google Scholar]

57. OzFoodNet Working Group. 2010. OzFoodNet quarterly report, 1 July to 30 September 2010. Commun Dis Intell Q Rep 34:450–458. [PubMed] [Google Scholar]

58. Norman G, Dumville JC, Mohapatra DP, Owens GL, Crosbie EJ. 2016. Antibiotics and antiseptics for surgical wounds healing by secondary intention. Cochrane Database Syst Rev 3:CD011712. doi: 10.1002/14651858.CD011712.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Waterbrook AL, Hiller K, Hays DP, Berkman M. 2013. Do topical antibiotics help prevent infection in minor traumatic uncomplicated soft tissue wounds? Ann Emerg Med 61:86–88. doi: 10.1016/j.annemergmed.2012.08.002. [PubMed] [CrossRef] [Google Scholar]

60. Dire DJ, Coppola M, Dwyer DA, Lorette JJ, Karr JL. 1995. Prospective evaluation of topical antibiotics for preventing infections in uncomplicated soft-tissue wounds repaired in the ED. Acad Emerg Med 2:4–10. doi: 10.1111/j.1553-2712.1995.tb03070.x. [PubMed] [CrossRef] [Google Scholar]

61. Rothrock SG. 2013. A single review article cannot define a standard of care for uncomplicated wounds. Ann Emerg Med 61:502. doi: 10.1016/j.annemergmed.2012.09.019. [PubMed] [CrossRef] [Google Scholar]

62. Maddox JS, Ware JC, Dillon HC Jr. 1985. The natural history of streptococcal skin infection: prevention with topical antibiotics. J Am Acad Dermatol 13:207–212. doi: 10.1016/S0190-9622(85)70160-0. [PubMed] [CrossRef] [Google Scholar]

63. Wuite J, Davies BI, Go M, Lambers J, Jackson D, Mellows G. 1983. Pseudomonic acid: a new topical antimicrobial agent. Lancet ii:394. [PubMed] [Google Scholar]

64. Dacre JE, Emmerson AM, Jenner EA. 1983. Nasal carriage of gentamicin and methicillin resistant Staphylococcus aureus treated with topical pseudomonic acid. Lancet ii:1036. [PubMed] [Google Scholar]

65. Reilly GD, Spencer RC. 1984. Pseudomonic acid—a new antibiotic for skin infections. J Antimicrob Chemother 13:295–298. doi: 10.1093/jac/13.3.295. [PubMed] [CrossRef] [Google Scholar]

66. Phillips LM, Yogev R, Esterly NB. 1985. The efficacy of mupirocin (pseudomonic acid) in the treatment of pyoderma in children. Pediatr Emerg Care 1:180–183. doi: 10.1097/00006565-198512000-00002. [PubMed] [CrossRef] [Google Scholar]

67. Rumsfield J, West DP, Aronson IK. 1986. Topical mupirocin in the treatment of bacterial skin infections. Drug Intell Clin Pharm 20:943–948. [PubMed] [Google Scholar]

68. Ward A, Campoli-Richards DM. 1986. Mupirocin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 32:425–444. [PubMed] [Google Scholar]

69. Eells LD, Mertz PM, Piovanetti Y, Pekoe GM, Eaglstein WH. 1986. Topical antibiotic treatment of impetigo with mupirocin. Arch Dermatol 122:1273–1276. [PubMed] [Google Scholar]

70. Gould PW, Villiger JW. 1986. Clinical and bacteriological efficacy of mupirocin (Bactroban): a new topical antibiotic. N Z Med J 99:516. [PubMed] [Google Scholar]

71. Coates T, Bax R, Coates A. 2009. Nasal decolonization of Staphylococcus aureus with mupirocin: strengths, weaknesses and future prospects. J Antimicrob Chemother 64:9–15. doi: 10.1093/jac/dkp159. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. van Rijen MM, Bonten M, Wenzel RP, Kluytmans JA. 2008. Intranasal mupirocin for reduction of Staphylococcus aureus infections in surgical patients with nasal carriage: a systematic review. J Antimicrob Chemother 61:254–261. doi: 10.1093/jac/dkm480. [PubMed] [CrossRef] [Google Scholar]

73. Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27:495–498. doi: 10.1128/AAC.27.4.495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Thomas CM, Hothersall J, Willis CL, Simpson TJ. 2010. Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289. doi: 10.1038/nrmicro2278. [PubMed] [CrossRef] [Google Scholar]

75. Thomas DG, Hann AC, Day MJ, Wilson JM, Russell AD. 1999. Structural changes induced by mupirocin in Staphylococcus aureus cells. Int J Antimicrob Agents 13:9–14. doi: 10.1016/S0924-8579(99)00090-4. [PubMed] [CrossRef] [Google Scholar]

76. Antonio M, McFerran N, Pallen MJ. 2002. Mutations affecting the Rossman fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 46:438–442. doi: 10.1128/AAC.46.2.438-442.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Swenson JM, Wong B, Simor AE, Thomson RB, Ferraro MJ, Hardy DJ, Hindler J, Jorgensen J, Reller LB, Traczewski M, McDougal LK, Patel JB. 2010. Multicenter study to determine disk diffusion and broth microdilution criteria for prediction of high- and low-level mupirocin resistance in Staphylococcus aureus. J Clin Microbiol 48:2469–2475. doi: 10.1128/JCM.00340-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Palepou MF, Johnson AP, Cookson BD, Beattie H, Charlett A, Woodford N. 1998. Evaluation of disc diffusion and Etest for determining the susceptibility of Staphylococcus aureus to mupirocin. J Antimicrob Chemother 42:577–583. doi: 10.1093/jac/42.5.577. [PubMed] [CrossRef] [Google Scholar]

79. Finlay JE, Miller LA, Poupard JA. 1998. Comparison of the 5 microg disc and the Neo-Sensitab for determining the susceptibilities of Staphylococcus aureus isolates to mupirocin. J Antimicrob Chemother 42:403–405. doi: 10.1093/jac/42.3.403. [PubMed] [CrossRef] [Google Scholar]

80. Finlay JE, Miller LA, Poupard JA. 1997. Interpretive criteria for testing susceptibility of staphylococci to mupirocin. Antimicrob Agents Chemother 41:1137–1139. [PMC free article] [PubMed] [Google Scholar]

81. de Oliveira NE, Cardozo AP, Marques Ede A, dos Santos KR, Giambiagi-deMarval M. 2007. Interpretive criteria to differentiate low- and high-level mupirocin resistance in Staphylococcus aureus. J Med Microbiol 56:937–939. doi: 10.1099/jmm.0.46965-0. [PubMed] [CrossRef] [Google Scholar]

82. Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial susceptibility testing, 26th ed CLSI, Wayne, PA. [Google Scholar]

83. Yun HJ, Lee SW, Yoon GM, Kim SY, Choi S, Lee YS, Choi EC, Kim S. 2003. Prevalence and mechanisms of low- and high-level mupirocin resistance in staphylococci isolated from a Korean hospital. J Antimicrob Chemother 51:619–623. doi: 10.1093/jac/dkg140. [PubMed] [CrossRef] [Google Scholar]

84. Hurdle JG, O'Neill AJ, Ingham E, Fishwick C, Chopra I. 2004. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob Agents Chemother 48:4366–4376. doi: 10.1128/AAC.48.11.4366-4376.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Hurdle JG, O'Neill AJ, Chopra I. 2004. The isoleucyl-tRNA synthetase mutation V588F conferring mupirocin resistance in glycopeptide-intermediate Staphylococcus aureus is not associated with a significant fitness burden. J Antimicrob Chemother 53:102–104. doi: 10.1093/jac/dkh020. [PubMed] [CrossRef] [Google Scholar]

86. Yang JA, Park DW, Sohn JW, Yang IS, Kim KH, Kim MJ. 2006. Molecular analysis of isoleucyl-tRNA synthetase mutations in clinical isolates of methicillin-resistant Staphylococcus aureus with low-level mupirocin resistance. J Korean Med Sci 21:827–832. doi: 10.3346/jkms.2006.21.5.827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Lee AS, Gizard Y, Empel J, Bonetti EJ, Harbarth S, Francois P. 2014. Mupirocin-induced mutations in ileS in various genetic backgrounds of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 52:3749–3754. doi: 10.1128/JCM.01010-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Hodgson JE, Curnock SP, Dyke KG, Morris R, Sylvester DR, Gross MS. 1994. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob Agents Chemother 38:1205–1208. doi: 10.1128/AAC.38.5.1205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Nunes EL, dos Santos KR, Mondino PJ, Bastos MC, Giambiagi-deMarval M. 1999. Detection of ileS-2 gene encoding mupirocin resistance in methicillin-resistant Staphylococcus aureus by multiplex PCR. Diagn Microbiol Infect Dis 34:77–81. doi: 10.1016/S0732-8893(99)00021-8. [PubMed] [CrossRef] [Google Scholar]

90. Perez-Roth E, Lopez-Aguilar C, Alcoba-Florez J, Mendez-Alvarez S. 2006. High-level mupirocin resistance within methicillin-resistant Staphylococcus aureus pandemic lineages. Antimicrob Agents Chemother 50:3207–3211. doi: 10.1128/AAC.00059-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Perez-Roth E, Potel-Alvarellos C, Espartero X, Constela-Carames L, Mendez-Alvarez S, Alvarez-Fernandez M. 2013. Molecular epidemiology of plasmid-mediated high-level mupirocin resistance in methicillin-resistant Staphylococcus aureus in four Spanish health care settings. Int J Med Microbiol 303:201–204. doi: 10.1016/j.ijmm.2013.03.003. [PubMed] [CrossRef] [Google Scholar]

92. Morton TM, Johnston JL, Patterson J, Archer GL. 1995. Characterization of a conjugative staphylococcal mupirocin resistance plasmid. Antimicrob Agents Chemother 39:1272–1280. doi: 10.1128/AAC.39.6.1272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Perez-Roth E, Kwong SM, Alcoba-Florez J, Firth N, Mendez-Alvarez S. 2010. Complete nucleotide sequence and comparative analysis of pPR9, a 41.7-kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance. Antimicrob Agents Chemother 54:2252–2257. doi: 10.1128/AAC.01074-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Needham C, Rahman M, Dyke KG, Noble WC. 1994. An investigation of plasmids from Staphylococcus aureus that mediate resistance to mupirocin and tetracycline. Microbiology 140:2577–2583. doi: 10.1099/00221287-140-10-2577. [PubMed] [CrossRef] [Google Scholar]

95. Perez-Roth E, Armas-Gonzalez E, Alcoba-Florez J, Mendez-Alvarez S. 2011. PCR-based amplification of heterogeneous IS257-ileS2 junctions for molecular monitoring of high-level mupirocin resistance in staphylococci. J Antimicrob Chemother 66:471–475. doi: 10.1093/jac/dkq493. [PubMed] [CrossRef] [Google Scholar]

96. Hurdle JG, O'Neill AJ, Mody L, Chopra I, Bradley SF. 2005. In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. J Antimicrob Chemother 56:1166–1168. doi: 10.1093/jac/dki387. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Matanovic K, Perez-Roth E, Pintaric S, Seol Martinec B. 2013. Molecular characterization of high-level mupirocin resistance in Staphylococcus pseudintermedius. J Clin Microbiol 51:1005–1007. doi: 10.1128/JCM.02904-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Lee AS, Macedo-Vinas M, Francois P, Renzi G, Schrenzel J, Vernaz N, Pittet D, Harbarth S. 2011. Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case-control study. Clin Infect Dis 52:1422–1430. doi: 10.1093/cid/cir233. [PubMed] [CrossRef] [Google Scholar]

99. Udo EE, Al-Sweih N, Noronha BC. 2003. A chromosomal location of the mupA gene in Staphylococcus aureus expressing high-level mupirocin resistance. J Antimicrob Chemother 51:1283–1286. doi: 10.1093/jac/dkg188. [PubMed] [CrossRef] [Google Scholar]

100. Driscoll DG, Young CL, Ochsner UA. 2007. Transient loss of high-level mupirocin resistance in Staphylococcus aureus due to MupA polymorphism. Antimicrob Agents Chemother 51:2247–2248. doi: 10.1128/AAC.00241-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Fritz SA, Hogan PG, Camins BC, Ainsworth AJ, Patrick C, Martin MS, Krauss MJ, Rodriguez M, Burnham CA. 2013. Mupirocin and chlorhexidine resistance in Staphylococcus aureus in patients with community-onset skin and soft tissue infections. Antimicrob Agents Chemother 57:559–568. doi: 10.1128/AAC.01633-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Seah C, Alexander DC, Louie L, Simor A, Low DE, Longtin J, Melano RG. 2012. MupB, a new high-level mupirocin resistance mechanism in Staphylococcus aureus. Antimicrob Agents Chemother 56:1916–1920. doi: 10.1128/AAC.05325-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Trouillet-Assant S, Flammier S, Sapin A, Dupieux C, Dumitrescu O, Tristan A, Vandenesch F, Rasigade JP, Laurent F. 2015. Mupirocin resistance in isolates of Staphylococcus spp. from nasal swabs in a tertiary hospital in France. J Clin Microbiol 53:2713–2715. doi: 10.1128/JCM.00274-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Desroches M, Potier J, Laurent F, Bourrel AS, Doucet-Populaire F, Decousser JW, Microbs Study Group. 2013. Prevalence of mupirocin resistance among invasive coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus (MRSA) in France: emergence of a mupirocin-resistant MRSA clone harbouring mupA. J Antimicrob Chemother 68:1714–1717. doi: 10.1093/jac/dkt085. [PubMed] [CrossRef] [Google Scholar]

105. O'Shea S, Cotter L, Creagh S, Lydon S, Lucey B. 2009. Mupirocin resistance among staphylococci: trends in the southern region of Ireland. J Antimicrob Chemother 64:649–650. doi: 10.1093/jac/dkp227. [PubMed] [CrossRef] [Google Scholar]

106. Deplano A, Vandendriessche S, Nonhoff C, Dodemont M, Roisin S, Denis O. 2016. National surveillance of Staphylococcus epidermidis recovered from bloodstream infections in Belgian hospitals. J Antimicrob Chemother 71:1815–1819. doi: 10.1093/jac/dkw086. [PubMed] [CrossRef] [Google Scholar]

107. Upton A, Lang S, Heffernan H. 2003. Mupirocin and Staphylococcus aureus: a recent paradigm of emerging antibiotic resistance. J Antimicrob Chemother 51:613–617. doi: 10.1093/jac/dkg127. [PubMed] [CrossRef] [Google Scholar]

108. Williamson DA, Monecke S, Heffernan H, Ritchie SR, Roberts SA, Upton A, Thomas MG, Fraser JD. 2014. High usage of topical fusidic acid and rapid clonal expansion of fusidic acid-resistant Staphylococcus aureus: a cautionary tale. Clin Infect Dis 59:1451–1454. doi: 10.1093/cid/ciu658. [PubMed] [CrossRef] [Google Scholar]

109. Riley TV, Carson CF, Bowman RA, Mulgrave L, Golledge CL, Pearman JW, Grubb WB. 1994. Mupirocin-resistant methicillin-resistant Staphylococcus aureus in western Australia. Med J Aust 161:397–398. [PubMed] [Google Scholar]

110. Torvaldsen S, Roberts C, Riley TV. 1999. The continuing evolution of methicillin-resistant Staphylococcus aureus in western Australia. Infect Control Hosp Epidemiol 20:133–135. doi: 10.1086/501594. [PubMed] [CrossRef] [Google Scholar]

111. Ellis MW, Griffith ME, Dooley DP, McLean JC, Jorgensen JH, Patterson JE, Davis KA, Hawley JS, Regules JA, Rivard RG, Gray PJ, Ceremuga JM, Dejoseph MA, Hospenthal DR. 2007. Targeted intranasal mupirocin to prevent colonization and infection by community-associated methicillin-resistant Staphylococcus aureus strains in soldiers: a cluster randomized controlled trial. Antimicrob Agents Chemother 51:3591–3598. doi: 10.1128/AAC.01086-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Vivoni AM, Santos KR, de-Oliveira MP, Giambiagi-deMarval M, Ferreira AL, Riley LW, Moreira BM. 2005. Mupirocin for controlling methicillin-resistant Staphylococcus aureus: lessons from a decade of use at a university hospital. Infect Control Hosp Epidemiol 26:662–667. doi: 10.1086/502599. [PubMed] [CrossRef] [Google Scholar]

113. Netto dos Santos KR, de Souza Fonseca L, Gontijo Filho PP. 1996. Emergence of high-level mupirocin resistance in methicillin-resistant Staphylococcus aureus isolated from Brazilian university hospitals. Infect Control Hosp Epidemiol 17:813–816. [PubMed] [Google Scholar]

114. Perez-Fontan M, Rosales M, Rodriguez-Carmona A, Falcon TG, Valdes F. 2002. Mupirocin resistance after long-term use for Staphylococcus aureus colonization in patients undergoing chronic peritoneal dialysis. Am J Kidney Dis 39:337–341. doi: 10.1053/ajkd.2002.30553. [PubMed] [CrossRef] [Google Scholar]

115. Annigeri R, Conly J, Vas S, Dedier H, Prakashan KP, Bargman JM, Jassal V, Oreopoulos D. 2001. Emergence of mupirocin-resistant Staphylococcus aureus in chronic peritoneal dialysis patients using mupirocin prophylaxis to prevent exit-site infection. Perit Dial Int 21:554–559. [PubMed] [Google Scholar]

116. Perl TM, Cullen JJ, Wenzel RP, Zimmerman MB, Pfaller MA, Sheppard D, Twombley J, French PP, Herwaldt LA, Mupirocin and the Risk of Staphylococcus aureus Study Team. 2002. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med 346:1871–1877. doi: 10.1056/NEJMoa003069. [PubMed] [CrossRef] [Google Scholar]

117. Fawley WN, Parnell P, Hall J, Wilcox MH. 2006. Surveillance for mupirocin resistance following introduction of routine peri-operative prophylaxis with nasal mupirocin. J Hosp Infect 62:327–332. doi: 10.1016/j.jhin.2005.09.022. [PubMed] [CrossRef] [Google Scholar]

118. Bode LG, Kluytmans JA, Wertheim HF, Bogaers D, Vandenbroucke-Grauls CM, Roosendaal R, Troelstra A, Box AT, Voss A, van der Tweel I, van Belkum A, Verbrugh HA, Vos MC. 2010. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 362:9–17. doi: 10.1056/NEJMoa0808939. [PubMed] [CrossRef] [Google Scholar]

119. Kluytmans JA, Mouton JW, VandenBergh MF, Manders MJ, Maat AP, Wagenvoort JH, Michel MF, Verbrugh HA. 1996. Reduction of surgical-site infections in cardiothoracic surgery by elimination of nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol 17:780–785. [PubMed] [Google Scholar]

120. Bathoorn E, Hetem DJ, Alphenaar J, Kusters JG, Bonten MJ. 2012. Emergence of high-level mupirocin resistance in coagulase-negative staphylococci associated with increased short-term mupirocin use. J Clin Microbiol 50:2947–2950. doi: 10.1128/JCM.00302-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Hetem DJ, Vogely HC, Severs TT, Troelstra A, Kusters JG, Bonten MJ. 2015. Acquisition of high-level mupirocin resistance in CoNS following nasal decolonization with mupirocin. J Antimicrob Chemother 70:1182–1184. doi: 10.1093/jac/dku522. [PubMed] [CrossRef] [Google Scholar]

122. Hetem DJ, Bootsma MC, Bonten MJ. 2016. Prevention of surgical site infections: decontamination with mupirocin based on preoperative screening for Staphylococcus aureus carriers or universal decontamination? Clin Infect Dis 62:631–636. doi: 10.1093/cid/civ990. [PubMed] [CrossRef] [Google Scholar]

123. Laurberg M, Kristensen O, Martemyanov K, Gudkov AT, Nagaev I, Hughes D, Liljas A. 2000. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303:593–603. doi: 10.1006/jmbi.2000.4168. [PubMed] [CrossRef] [Google Scholar]

124. Norstrom T, Lannergard J, Hughes D. 2007. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob Agents Chemother 51:4438–4446. doi: 10.1128/AAC.00328-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Castanheira M, Watters AA, Bell JM, Turnidge JD, Jones RN. 2010. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007–2008. Antimicrob Agents Chemother 54:3614–3617. doi: 10.1128/AAC.01390-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Besier S, Ludwig A, Brade V, Wichelhaus TA. 2003. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463–469. doi: 10.1046/j.1365-2958.2003.03307.x. [PubMed] [CrossRef] [Google Scholar]

127. Besier S, Ludwig A, Brade V, Wichelhaus TA. 2005. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49:1426–1431. doi: 10.1128/AAC.49.4.1426-1431.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Koripella RK, Chen Y, Peisker K, Koh CS, Selmer M, Sanyal S. 2012. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J Biol Chem 287:30257–30267. doi: 10.1074/jbc.M112.378521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Cox G, Thompson GS, Jenkins HT, Peske F, Savelsbergh A, Rodnina MV, Wintermeyer W, Homans SW, Edwards TA, O'Neill AJ. 2012. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci U S A 109:2102–2107. doi: 10.1073/pnas.1117275109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Huang J, Ye M, Ding H, Guo Q, Ding B, Wang M. 2013. Prevalence of fusB in Staphylococcus aureus clinical isolates. J Med Microbiol 62:1199–1203. doi: 10.1099/jmm.0.058305-0. [PubMed] [CrossRef] [Google Scholar]

131. Farrell DJ, Castanheira M, Chopra I. 2011. Characterization of global patterns and the genetics of fusidic acid resistance. Clin Infect Dis 52(Suppl 7):S487–S492. doi: 10.1093/cid/cir164. [PubMed] [CrossRef] [Google Scholar]

132. O'Brien FG, Price C, Grubb WB, Gustafson JE. 2002. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313–321. doi: 10.1093/jac/dkf153. [PubMed] [CrossRef] [Google Scholar]

133. Lannergard J, Norstrom T, Hughes D. 2009. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother 53:2059–2065. doi: 10.1128/AAC.00871-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Liu Y, Geng W, Yang Y, Wang C, Zheng Y, Shang Y, Wu D, Li X, Wang L, Yu S, Yao K, Shen X. 2012. Susceptibility to and resistance determinants of fusidic acid in Staphylococcus aureus isolated from Chinese children with skin and soft tissue infections. FEMS Immunol Med Microbiol 64:212–218. doi: 10.1111/j.1574-695X.2011.00887.x. [PubMed] [CrossRef] [Google Scholar]

135. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simoes PM, Tristan A, Petersen A, Aziz M, Kiil K, Cirkovic I, Udo EE, del Campo R, Vuopio-Varkila J, Ahmad N, Tokajian S, Peters G, Schaumburg F, Olsson-Liljequist B, Givskov M, Driebe EE, Vigh HE, Shittu A, Ramdani-Bougessa N, Rasigade JP, Price LB, Vandenesch F, Larsen AR, Laurent F. 2014. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. mBio 5:e01044-14. doi: 10.1128/mBio.01044-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. O'Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I. 2007. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45:1505–1510. doi: 10.1128/JCM.01984-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. 2010. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother 65:1353–1358. doi: 10.1093/jac/dkq094. [PubMed] [CrossRef] [Google Scholar]

138. Chen HJ, Chang YC, Tsai JC, Hung WC, Lin YT, You SJ, Tseng SP, Teng LJ. 2013. New structure of phage-related islands carrying fusB and a virulence gene in fusidic acid-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 57:5737–5739. doi: 10.1128/AAC.01433-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791. doi: 10.1073/pnas.0402521101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. O'Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737–1740. doi: 10.1128/AAC.01542-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Chen HJ, Hung WC, Lin YT, Tsai JC, Chiu HC, Hsueh PR, Teng LJ. 2015. A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii. J Antimicrob Chemother 70:416–419. doi: 10.1093/jac/dku408. [PubMed] [CrossRef] [Google Scholar]

142. Ellington MJ, Reuter S, Harris SR, Holden MT, Cartwright EJ, Greaves D, Gerver SM, Hope R, Brown NM, Torok ME, Parkhill J, Koser CU, Peacock SJ. 2015. Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 45:477–484. doi: 10.1016/j.ijantimicag.2015.01.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Lin YT, Tsai JC, Chen HJ, Hung WC, Hsueh PR, Teng LJ. 2014. A novel staphylococcal cassette chromosomal element, SCCfusC, carrying fusC and speG in fusidic acid-resistant methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 58:1224–1227. doi: 10.1128/AAC.01772-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Kinnevey PM, Shore AC, Brennan GI, Sullivan DJ, Ehricht R, Monecke S, Slickers P, Coleman DC. 2013. Emergence of sequence type 779 methicillin-resistant Staphylococcus aureus harboring a novel pseudo staphylococcal cassette chromosome mec (SCCmec)-SCC-SCCCRISPR composite element in Irish hospitals. Antimicrob Agents Chemother 57:524–531. doi: 10.1128/AAC.01689-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Hung WC, Chen HJ, Lin YT, Tsai JC, Chen CW, Lu HH, Tseng SP, Jheng YY, Leong KH, Teng LJ. 2015. Skin commensal staphylococci may act as reservoir for fusidic acid resistance genes. PLoS One 10:e0143106. doi: 10.1371/journal.pone.0143106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Chen HJ, Lin YT, Hung WC, Tsai JC, Hsueh PR, Teng LJ. 2016. Distribution of staphylococcal cassette chromosome (SCC) mec element types in fusidic acid-resistant Staphylococcus epidermidis and identification of a novel SCC7684 element. Antimicrob Agents Chemother 60:5006–5009. doi: 10.1128/AAC.00231-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Baines SL, Howden BP, Heffernan H, Stinear TP, Carter GP, Seemann T, Kwong JC, Ritchie SR, Williamson DA. 2016. Rapid emergence and evolution of Staphylococcus aureus clones harboring fusC-containing staphylococcal cassette chromosome elements. Antimicrob Agents Chemother 60:2359–2365. doi: 10.1128/AAC.03020-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Livermore D, James D, Duckworth G, Stephens P. 2002. Fusidic-acid use and resistance. Lancet 360:806. [PubMed] [Google Scholar]

149. Mason BW, Howard AJ, Magee JT. 2003. Fusidic acid resistance in community isolates of methicillin-susceptible Staphylococcus aureus and fusidic acid prescribing. J Antimicrob Chemother 51:1033–1036. doi: 10.1093/jac/dkg190. [PubMed] [CrossRef] [Google Scholar]

150. Farrell DJ, Mendes RE, Castanheira M, Jones RN. 2016. Activity of fusidic acid tested against staphylococci isolated from patients in U.S. medical centers in 2014. Antimicrob Agents Chemother 60:3827–3831. doi: 10.1128/AAC.00238-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Shah M, Mohanraj M. 2003. High levels of fusidic acid-resistant Staphylococcus aureus in dermatology patients. Br J Dermatol 148:1018–1020. doi: 10.1046/j.1365-2133.2003.05291.x. [PubMed] [CrossRef] [Google Scholar]

152. Ravenscroft JC, Layton A, Barnham M. 2000. Observations on high levels of fusidic acid resistant Staphylococcus aureus in Harrogate, North Yorkshire, UK. Clin Exp Dermatol 25:327–330. doi: 10.1046/j.1365-2230.2000.00654.x. [PubMed] [CrossRef] [Google Scholar]

153. Peeters KA, Mascini EM, Sanders CJ. 2004. Resistance of Staphylococcus aureus to fusidic acid. Int J Dermatol 43:235–236. doi: 10.1111/j.1365-4632.2004.02172.x. [PubMed] [CrossRef] [Google Scholar]

154. Sule O, Brown NM, Willocks LJ, Day J, Shankar S, Palmer CR, Burrows NP. 2007. Fusidic acid-resistant Staphylococcus aureus (FRSA) carriage in patients with atopic eczema and pattern of prior topical fusidic acid use. Int J Antimicrob Agents 30:78–82. doi: 10.1016/j.ijantimicag.2007.02.015. [PubMed] [CrossRef] [Google Scholar]

155. Howden BP, Grayson ML. 2006. Dumb and dumber—the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis 42:394–400. doi: 10.1086/499365. [PubMed] [CrossRef] [Google Scholar]

156. Whitby M. 1999. Fusidic acid in the treatment of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 12(Suppl 2):S67–S71. doi: 10.1016/S0924-8579(98)00075-2. [PubMed] [CrossRef] [Google Scholar]

157. Waksman SA, Lechevalier HA. 1949. Neomycin, a new antibiotic active against Streptomycin-resistant bacteria, including tuberculosis organisms. Science 109:305–307. doi: 10.1126/science.109.2830.305. [PubMed] [CrossRef] [Google Scholar]

158. Tsuji K, Robertson JH, Baas R, McInnis DJ. 1969. Comparative study of responses to neomycins B and C by microbiological and gas-liquid chromatographic assay methods. Appl Microbiol 18:396–398. [PMC free article] [PubMed] [Google Scholar]

159. Magnet S, Blanchard JS. 2005. Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498. doi: 10.1021/cr0301088. [PubMed] [CrossRef] [Google Scholar]

160. Lio PA, Kaye ET. 2009. Topical antibacterial agents. Infect Dis Clin North Am 23:945–963. doi: 10.1016/j.idc.2009.06.006. [PubMed] [CrossRef] [Google Scholar]

161. Yamasoba T, Tsukuda K. 2004. Ototoxicity after use of neomycin eardrops is unrelated to A1555G point mutation in mitochondrial DNA. J Laryngol Otol 118:546–550. doi: 10.1258/0022215041615245. [PubMed] [CrossRef] [Google Scholar]

162. Stone KJ, Strominger JL. 1971. Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc Natl Acad Sci U S A 68:3223–3227. doi: 10.1073/pnas.68.12.3223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Jones RN, Li Q, Kohut B, Biedenbach DJ, Bell J, Turnidge JD. 2006. Contemporary antimicrobial activity of triple antibiotic ointment: a multiphased study of recent clinical isolates in the United States and Australia. Diagn Microbiol Infect Dis 54:63–71. doi: 10.1016/j.diagmicrobio.2005.08.009. [PubMed] [CrossRef] [Google Scholar]

164. Evans FL. 1948. A note on the susceptibility of Hemophilus influenzae type B to bacitracin. J Bacteriol 56:507. [PMC free article] [PubMed] [Google Scholar]

165. Schalock PC, Zug KA. 2005. Bacitracin. Cutis 76:105–107. [PubMed] [Google Scholar]

166. Stansly PG, Schlosser ME. 1947. Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics. J Bacteriol 54:549–556. [PMC free article] [PubMed] [Google Scholar]

167. Brownlee G. 1949. Antibiotics derived from bacillus polymyxa. Ann N Y Acad Sci 51:875–878. doi: 10.1111/j.1749-6632.1949.tb27313.x. [PubMed] [CrossRef] [Google Scholar]

168. Traczewski MM, Brown SD. 2008. Proposed MIC and disk diffusion microbiological cutoffs and spectrum of activity of retapamulin, a novel topical antimicrobial agent. Antimicrob Agents Chemother 52:3863–3867. doi: 10.1128/AAC.00399-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Kosowska-Shick K, Clark C, Credito K, McGhee P, Dewasse B, Bogdanovich T, Appelbaum PC. 2006. Single- and multistep resistance selection studies on the activity of retapamulin compared to other agents against Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 50:765–769. doi: 10.1128/AAC.50.2.765-769.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. van Duijkeren E, Greko C, Pringle M, Baptiste KE, Catry B, Jukes H, Moreno MA, Pomba MC, Pyorala S, Rantala M, Ruzauskas M, Sanders P, Teale C, Threlfall EJ, Torren-Edo J, Torneke K. 2014. Pleuromutilins: use in food-producing animals in the European Union, development of resistance and impact on human and animal health. J Antimicrob Chemother 69:2022–2031. doi: 10.1093/jac/dku123. [PubMed] [CrossRef] [Google Scholar]

171. Paukner S, Riedl R. 2017. Pleuromutilins: potent drugs for resistant bugs—mode of action and resistance. Cold Spring Harb Perspect Med 7:a027110. doi: 10.1101/cshperspect.a027110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Scangarella-Oman NE, Shawar RM, Bouchillon S, Hoban D. 2009. Microbiological profile of a new topical antibacterial: retapamulin ointment 1%. Expert Rev Anti Infect Ther 7:269–279. doi: 10.1586/eri.09.7. [PubMed] [CrossRef] [Google Scholar]

173. Moody MN, Morrison LK, Tyring SK. 2010. Retapamulin: what is the role of this topical antimicrobial in the treatment of bacterial infections in atopic dermatitis? Skin Ther Lett 15:1–4. [PubMed] [Google Scholar]

174. Farrell DJ, Robbins M, Rhys-Williams W, Love WG. 2011. Investigation of the potential for mutational resistance to XF-73, retapamulin, mupirocin, fusidic acid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus isolates during a 55-passage study. Antimicrob Agents Chemother 55:1177–1181. doi: 10.1128/AAC.01285-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Gentry DR, Rittenhouse SF, McCloskey L, Holmes DJ. 2007. Stepwise exposure of Staphylococcus aureus to pleuromutilins is associated with stepwise acquisition of mutations in rplC and minimally affects susceptibility to retapamulin. Antimicrob Agents Chemother 51:2048–2052. doi: 10.1128/AAC.01066-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Gentry DR, McCloskey L, Gwynn MN, Rittenhouse SF, Scangarella N, Shawar R, Holmes DJ. 2008. Genetic characterization of Vga ABC proteins conferring reduced susceptibility to pleuromutilins in Staphylococcus aureus. Antimicrob Agents Chemother 52:4507–4509. doi: 10.1128/AAC.00915-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Candel FJ, Morales G, Picazo JJ. 2011. In vitro activity of retapamulin against linezolid and methicillin-resistant Staphylococcus aureus isolates. Rev Esp Quimioter 24:127–130. [PubMed] [Google Scholar]

178. Woodford N, Afzal-Shah M, Warner M, Livermore DM. 2008. In vitro activity of retapamulin against Staphylococcus aureus isolates resistant to fusidic acid and mupirocin. J Antimicrob Chemother 62:766–768. doi: 10.1093/jac/dkn266. [PubMed] [CrossRef] [Google Scholar]

179. Saravolatz LD, Pawlak J, Saravolatz SN, Johnson LB. 2013. In vitro activity of retapamulin against Staphylococcus aureus resistant to various antimicrobial agents. Antimicrob Agents Chemother 57:4547–4550. doi: 10.1128/AAC.00282-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. McNeil JC, Hulten KG, Kaplan SL, Mason EO. 2014. Decreased susceptibilities to retapamulin, mupirocin, and chlorhexidine among Staphylococcus aureus isolates causing skin and soft tissue infections in otherwise healthy children. Antimicrob Agents Chemother 58:2878–2883. doi: 10.1128/AAC.02707-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Parnham MJ, Sies H. 2013. The early research and development of ebselen. Biochem Pharmacol 86:1248–1253. doi: 10.1016/j.bcp.2013.08.028. [PubMed] [CrossRef] [Google Scholar]

182. Thangamani S, Younis W, Seleem MN. 2015. Repurposing clinical molecule ebselen to combat drug resistant pathogens. PLoS One 10:e0133877. doi: 10.1371/journal.pone.0133877. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Thangamani S, Younis W, Seleem MN. 2015. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep 5:11596. doi: 10.1038/srep11596. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Lu J, Vlamis-Gardikas A, Kandasamy K, Zhao R, Gustafsson TN, Engstrand L, Hoffner S, Engman L, Holmgren A. 2013. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. FASEB J 27:1394–1403. doi: 10.1096/fj.12-223305. [PubMed] [CrossRef] [Google Scholar]

185. Fox JL. 2013. Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379–382. doi: 10.1038/nbt.2572. [PubMed] [CrossRef] [Google Scholar]

186. Yeung AT, Gellatly SL, Hancock RE. 2011. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176. doi: 10.1007/s00018-011-0710-x. [PubMed] [CrossRef] [Google Scholar]

187. Myhrman E, Hakansson J, Lindgren K, Bjorn C, Sjostrand V, Mahlapuu M. 2013. The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections. Appl Microbiol Biotechnol 97:3085–3096. doi: 10.1007/s00253-012-4439-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Bjorn C, Noppa L, Naslund Salomonsson E, Johansson AL, Nilsson E, Mahlapuu M, Hakansson J. 2015. Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int J Antimicrob Agents 45:519–524. doi: 10.1016/j.ijantimicag.2014.12.015. [PubMed] [CrossRef] [Google Scholar]

189. Hakansson J, Bjorn C, Lindgren K, Sjostrom E, Sjostrand V, Mahlapuu M. 2014. Efficacy of the novel topical antimicrobial agent PXL150 in a mouse model of surgical site infections. Antimicrob Agents Chemother 58:2982–2984. doi: 10.1128/AAC.00143-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Flamm RK, Rhomberg PR, Farrell DJ, Jones RN. 2016. In vitro spectrum of pexiganan activity; bactericidal action and resistance selection tested against pathogens with elevated MIC values to topical agents. Diagn Microbiol Infect Dis 86:66–69. doi: 10.1016/j.diagmicrobio.2016.06.012. [PubMed] [CrossRef] [Google Scholar]

191. Flamm RK, Rhomberg PR, Simpson KM, Farrell DJ, Sader HS, Jones RN. 2015. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother 59:1751–1754. doi: 10.1128/AAC.04773-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Lipsky BA, Holroyd KJ, Zasloff M. 2008. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47:1537–1545. doi: 10.1086/593185. [PubMed] [CrossRef] [Google Scholar]

193. Ge Y, MacDonald D, Henry MM, Hait HI, Nelson KA, Lipsky BA, Zasloff MA, Holroyd KJ. 1999. In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn Microbiol Infect Dis 35:45–53. doi: 10.1016/S0732-8893(99)00056-5. [PubMed] [CrossRef] [Google Scholar]

194. Gottler LM, Ramamoorthy A. 2009. Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788:1680–1686. doi: 10.1016/j.bbamem.2008.10.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Sheldon AT., Jr 2005. Antiseptic “resistance”: real or perceived threat? Clin Infect Dis 40:1650–1656. doi: 10.1086/430063. [PubMed] [CrossRef] [Google Scholar]

196. Davies GE, Francis J, Martin AR, Rose FL, Swain G. 1954. 1:6-Di-4′-chlorophenyldiguanidohexane (hibitane); laboratory investigation of a new antibacterial agent of high potency. Br J Pharmacol Chemother 9:192–196. doi: 10.1111/j.1476-5381.1954.tb00840.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Russell AD. 1986. Chlorhexidine: antibacterial action and bacterial resistance. Infection 14:212–215. doi: 10.1007/BF01644264. [PubMed] [CrossRef] [Google Scholar]

198. Silvestri DL, McEnery-Stonelake M. 2013. Chlorhexidine: uses and adverse reactions. Dermatitis 24:112–118. doi: 10.1097/DER.0b013e3182905561. [PubMed] [CrossRef] [Google Scholar]

199. Loftus MJ, Florescu CJ, Stuart RL. 2014. Staphylococcus aureus bacteraemia associated with peripherally inserted central catheters: the role of chlorhexidine gluconate-impregnated sponge dressings. Med J Aust 200:317–318. doi: 10.5694/mja13.00092. [PubMed] [CrossRef] [Google Scholar]

200. Rupp ME, Lisco SJ, Lipsett PA, Perl TM, Keating K, Civetta JM, Mermel LA, Lee D, Dellinger EP, Donahoe M, Giles D, Pfaller MA, Maki DG, Sherertz R. 2005. Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 143:570–580. doi: 10.7326/0003-4819-143-8-200510180-00007. [PubMed] [CrossRef] [Google Scholar]

201. McDonnell G, Russell AD. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179. [PMC free article] [PubMed] [Google Scholar]

202. Sijbesma T, Rockmann H, van der Weegen W. 2011. Severe anaphylactic reaction to chlorhexidine during total hip arthroplasty surgery. A case report. Hip Int 21:630–632. doi: 10.5301/HIP.2011.8644. [PubMed] [CrossRef] [Google Scholar]

203. Parkes AW, Harper N, Herwadkar A, Pumphrey R. 2009. Anaphylaxis to the chlorhexidine component of Instillagel: a case series. Br J Anaesth 102:65–68. doi: 10.1093/bja/aen324. [PubMed] [CrossRef] [Google Scholar]

204. Maki DG. 1989. The use of antiseptics for handwashing by medical personnel. J Chemother 1(Suppl 1):S3–S11. [PubMed] [Google Scholar]

205. Horner C, Mawer D, Wilcox M. 2012. Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother 67:2547–2559. doi: 10.1093/jac/dks284. [PubMed] [CrossRef] [Google Scholar]

206. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. 1999. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 20:250–278. [PubMed] [Google Scholar]

207. Climo MW, Sepkowitz KA, Zuccotti G, Fraser VJ, Warren DK, Perl TM, Speck K, Jernigan JA, Robles JR, Wong ES. 2009. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med 37:1858–1865. doi: 10.1097/CCM.0b013e31819ffe6d. [PubMed] [CrossRef] [Google Scholar]

208. Huang SS, Septimus E, Kleinman K, Moody J, Hickok J, Avery TR, Lankiewicz J, Gombosev A, Terpstra L, Hartford F, Hayden MK, Jernigan JA, Weinstein RA, Fraser VJ, Haffenreffer K, Cui E, Kaganov RE, Lolans K, Perlin JB, Platt R. 2013. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 368:2255–2265. doi: 10.1056/NEJMoa1207290. [PubMed] [CrossRef] [Google Scholar]

209. Batra R, Cooper BS, Whiteley C, Patel AK, Wyncoll D, Edgeworth JD. 2010. Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit. Clin Infect Dis 50:210–217. doi: 10.1086/648717. [PubMed] [CrossRef] [Google Scholar]

210. Hayden MK, Lolans K, Haffenreffer K, Avery TR, Kleinman K, Li H, Kaganov RE, Lankiewicz J, Moody J, Septimus E, Weinstein RA, Hickok J, Jernigan J, Perlin JB, Platt R, Huang SS. 2016. Chlorhexidine and mupirocin susceptibility of methicillin-resistant Staphylococcus aureus isolates in the REDUCE-MRSA Trial. J Clin Microbiol 54:2735–2742. doi: 10.1128/JCM.01444-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. McNeil JC, Kok EY, Vallejo JG, Campbell JR, Hulten KG, Mason EO, Kaplan SL. 2016. Clinical and molecular features of decreased chlorhexidine susceptibility among nosocomial Staphylococcus aureus isolates at Texas Children's Hospital. Antimicrob Agents Chemother 60:1121–1128. doi: 10.1128/AAC.02011-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Macias JH, Alvarez MF, Arreguin V, Munoz JM, Macias AE, Alvarez JA. 2016. Chlorhexidine avoids skin bacteria recolonization more than triclosan. Am J Infect Control 44:1530–1534. doi: 10.1016/j.ajic.2016.04.235. [PubMed] [CrossRef] [Google Scholar]

213. Gunther F, Kaiser SJ, Fries T, Frank U, Mutters NT. 2015. Susceptibility of multidrug resistant clinical pathogens to a chlorhexidine formulation. J Prev Med Hyg 56:E176–E179. [PMC free article] [PubMed] [Google Scholar]

214. Kawana R, Kitamura T, Nakagomi O, Matsumoto I, Arita M, Yoshihara N, Yanagi K, Yamada A, Morita O, Yoshida Y, Furuya Y, Chiba S. 1997. Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology 195(Suppl 2):S29–S35. [PubMed] [Google Scholar]

215. Gantait S, Bhattacharyya J, Das S, Biswas S, Ghati A, Ghosh S, Goel P. 2016. Comparative assessment of the effectiveness of different cleaning methods on the growth of Candida albicans over acrylic surface. Contemp Clin Dent 7:336–342. doi: 10.4103/0976-237X.188554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Best M, Sattar SA, Springthorpe VS, Kennedy ME. 1990. Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28:2234–2239. [PMC free article] [PubMed] [Google Scholar]

217. Bonez PC, Dos Santos Alves CF, Dalmolin TV, Agertt VA, Mizdal CR, Flores VC, Marques JB, Santos RC, Anraku de Campos MM. 2013. Chlorhexidine activity against bacterial biofilms. Am J Infect Control 41:e119–e122. doi: 10.1016/j.ajic.2013.05.002. [PubMed] [CrossRef] [Google Scholar]

218. Hugo WB, Longworth AR. 1964. Some aspects of the mode of action of chlorhexidine. J Pharm Pharmacol 16:655–662. doi: 10.1111/j.2042-7158.1964.tb07384.x. [PubMed] [CrossRef] [Google Scholar]

219. Kampf G. 2009. Effect of chlorhexidine probably overestimated because of lack of neutralization after sampling. Infect Control Hosp Epidemiol 30:811–812. doi: 10.1086/597522. [PubMed] [CrossRef] [Google Scholar]

220. Poole K. 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51. doi: 10.1093/jac/dki171. [PubMed] [CrossRef] [Google Scholar]

221. Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. 2015. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 5:44–61. doi: 10.1556/EuJMI-D-14-00038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Smith K, Gemmell CG, Hunter IS. 2008. The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 61:78–84. doi: 10.1093/jac/dkm395. [PubMed] [CrossRef] [Google Scholar]

223. Lu Z, Chen Y, Chen W, Liu H, Song Q, Hu X, Zou Z, Liu Z, Duo L, Yang J, Gong Y, Wang Z, Wu X, Zhao J, Zhang C, Zhang M, Han L. 2015. Characteristics of qacA/B-positive Staphylococcus aureus isolated from patients and a hospital environment in China. J Antimicrob Chemother 70:653–657. doi: 10.1093/jac/dku456. [PubMed] [CrossRef] [Google Scholar]

224. Guo W, Shan K, Xu B, Li J. 2015. Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health 109:184–192. doi: 10.1179/2047773215Y.0000000022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Tennent JM, Lyon BR, Gillespie MT, May JW, Skurray RA. 1985. Cloning and expression of Staphylococcus aureus plasmid-mediated quaternary ammonium resistance in Escherichia coli. Antimicrob Agents Chemother 27:79–83. doi: 10.1128/AAC.27.1.79. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA. 1998. QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 273:18665–18673. doi: 10.1074/jbc.273.29.18665. [PubMed] [CrossRef] [Google Scholar]

227. Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. 2001. Structural mechanisms of QacR induction and multidrug recognition. Science 294:2158–2163. doi: 10.1126/science.1066020. [PubMed] [CrossRef] [Google Scholar]

228. Schlett CD, Millar EV, Crawford KB, Cui T, Lanier JB, Tribble DR, Ellis MW. 2014. Prevalence of chlorhexidine-resistant methicillin-resistant Staphylococcus aureus following prolonged exposure. Antimicrob Agents Chemother 58:4404–4410. doi: 10.1128/AAC.02419-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Hasanvand A, Ghafourian S, Taherikalani M, Jalilian FA, Sadeghifard N, Pakzad I. 2015. Antiseptic resistance in methicillin sensitive and methicillin resistant Staphylococcus aureus isolates from some major hospitals, Iran. Recent Pat Antiinfect Drug Discov 10:105–112. doi: 10.2174/1574891X10666150623093259. [PubMed] [CrossRef] [Google Scholar]

230. Wang JT, Sheng WH, Wang JL, Chen D, Chen ML, Chen YC, Chang SC. 2008. Longitudinal analysis of chlorhexidine susceptibilities of nosocomial methicillin-resistant Staphylococcus aureus isolates at a teaching hospital in Taiwan. J Antimicrob Chemother 62:514–517. doi: 10.1093/jac/dkn208. [PubMed] [CrossRef] [Google Scholar]

231. Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Soderquist B. 2014. Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS 122:961–967. doi: 10.1111/apm.12239. [PubMed] [CrossRef] [Google Scholar]

232. Hijazi K, Mukhopadhya I, Abbott F, Milne K, Al-Jabri ZJ, Oggioni MR, Gould IM. 2016. Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48:86–90. doi: 10.1016/j.ijantimicag.2016.04.015. [PubMed] [CrossRef] [Google Scholar]

233. McGann P, Kwak YI, Summers A, Cummings JF, Waterman PE, Lesho EP. 2011. Detection of qacA/B in clinical isolates of methicillin-resistant Staphylococcus aureus from a regional healthcare network in the eastern United States. Infect Control Hosp Epidemiol 32:1116–1119. doi: 10.1086/662380. [PubMed] [CrossRef] [Google Scholar]

234. Tanner J, Lin Y, Kornblum J, Herzig CT, Bystritsky R, Uhlemann AC, Lowy FD. 2014. Molecular characterization of methicillin-resistant Staphylococcus aureus clinical isolates obtained from the Rikers Island Jail System from 2009 to 2013. J Clin Microbiol 52:3091–3094. doi: 10.1128/JCM.01129-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V. 2012. High prevalence of qacA/B carriage among clinical isolates of meticillin-resistant Staphylococcus aureus in Malaysia. J Hosp Infect 81:206–208. doi: 10.1016/j.jhin.2012.04.015. [PubMed] [CrossRef] [Google Scholar]

236. Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG. 2011. Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother 55:2999–3001. doi: 10.1128/AAC.01707-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Liu Q, Zhao H, Han L, Shu W, Wu Q, Ni Y. 2015. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis 82:278–283. doi: 10.1016/j.diagmicrobio.2015.03.023. [PubMed] [CrossRef] [Google Scholar]

238. Skovgaard S, Larsen MH, Nielsen LN, Skov RL, Wong C, Westh H, Ingmer H. 2013. Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. J Antimicrob Chemother 68:2226–2233. doi: 10.1093/jac/dkt182. [PubMed] [CrossRef] [Google Scholar]

239. Jones RD, Jampani HB, Newman JL, Lee AS. 2000. Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196. doi: 10.1067/mic.2000.102378. [PubMed] [CrossRef] [Google Scholar]

240. Schweizer HP. 2001. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7. doi: 10.1111/j.1574-6968.2001.tb10772.x. [PubMed] [CrossRef] [Google Scholar]

241. Russell AD. 2004. Whither triclosan? J Antimicrob Chemother 53:693–695. doi: 10.1093/jac/dkh171. [PubMed] [CrossRef] [Google Scholar]

242. Escalada MG, Russell AD, Maillard JY, Ochs D. 2005. Triclosan-bacteria interactions: single or multiple target sites? Lett Appl Microbiol 41:476–481. doi: 10.1111/j.1472-765X.2005.01790.x. [PubMed] [CrossRef] [Google Scholar]

243. Stewart MJ, Parikh S, Xiao G, Tonge PJ, Kisker C. 1999. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J Mol Biol 290:859–865. doi: 10.1006/jmbi.1999.2907. [PubMed] [CrossRef] [Google Scholar]

244. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114. doi: 10.1074/jbc.274.16.11110. [PubMed] [CrossRef] [Google Scholar]

245. McMurry LM, Oethinger M, Levy SB. 1998. Triclosan targets lipid synthesis. Nature 394:531–532. doi: 10.1038/28970. [PubMed] [CrossRef] [Google Scholar]

246. McMurry LM, McDermott PF, Levy SB. 1999. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 43:711–713. doi: 10.1093/jac/43.5.711. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

247. Heath RJ, Rock CO. 1995. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 270:26538–26542. doi: 10.1074/jbc.270.44.26538. [PubMed] [CrossRef] [Google Scholar]

248. Heath RJ, White SW, Rock CO. 2001. Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res 40:467–497. doi: 10.1016/S0163-7827(01)00012-1. [PubMed] [CrossRef] [Google Scholar]

249. Brenwald NP, Fraise AP. 2003. Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 55:141–144. doi: 10.1016/S0195-6701(03)00222-6. [PubMed] [CrossRef] [Google Scholar]

250. Chen Y, Pi B, Zhou H, Yu Y, Li L. 2009. Triclosan resistance in clinical isolates of Acinetobacter baumannii. J Med Microbiol 58:1086–1091. doi: 10.1099/jmm.0.008524-0. [PubMed] [CrossRef] [Google Scholar]

251. Grandgirard D, Furi L, Ciusa ML, Baldassarri L, Knight DR, Morrissey I, Largiader CR, Leib SL, Oggioni MR. 2015. Mutations upstream of fabI in triclosan resistant Staphylococcus aureus strains are associated with elevated fabI gene expression. BMC Genomics 16:345. doi: 10.1186/s12864-015-1544-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

252. Ciusa ML, Furi L, Knight D, Decorosi F, Fondi M, Raggi C, Coelho JR, Aragones L, Moce L, Visa P, Freitas AT, Baldassarri L, Fani R, Viti C, Orefici G, Martinez JL, Morrissey I, Oggioni MR. 2012. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents 40:210–220. doi: 10.1016/j.ijantimicag.2012.04.021. [PubMed] [CrossRef] [Google Scholar]

253. Furi L, Haigh R, Al Jabri ZJ, Morrissey I, Ou HY, Leon-Sampedro R, Martinez JL, Coque TM, Oggioni MR. 2016. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes. Front Microbiol 7:1008. doi: 10.3389/fmicb.2016.01008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

254. Durani P, Leaper D. 2008. Povidone-iodine: use in hand disinfection, skin preparation and antiseptic irrigation. Int Wound J 5:376–387. doi: 10.1111/j.1742-481X.2007.00405.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

255. Hugo WB. 1991. A brief history of heat and chemical preservation and disinfection. J Appl Bacteriol 71:9–18. [PubMed] [Google Scholar]

256. Shelanski HA, Shelanski MV. 1956. PVP-iodine: history, toxicity and therapeutic uses. J Int Coll Surg 25:727–734. [PubMed] [Google Scholar]

257. Zamora JL. 1986. Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. Am J Surg 151:400–406. doi: 10.1016/0002-9610(86)90477-0. [PubMed] [CrossRef] [Google Scholar]

258. Hosseini H, Ashraf MJ, Saleh M, Nowroozzadeh MH, Nowroozizadeh B, Abtahi MB, Nowroozizadeh S. 2012. Effect of povidone-iodine concentration and exposure time on bacteria isolated from endophthalmitis cases. J Cataract Refract Surg 38:92–96. doi: 10.1016/j.jcrs.2011.06.030. [PubMed] [CrossRef] [Google Scholar]

259. Khan FA, Hussain MA, Khan Niazi SP, Haq Z, Akhtar N. 2016. Efficacy of 2.5% and 1.25% povidone-iodine solution for prophylaxis of ophthalmia neonatorum. J Coll Physicians Surg Pak 26:121–124. doi: 10.2016/JCPSP.121124. [PubMed] [CrossRef] [Google Scholar]

260. Mitani O, Nishikawa A, Kurokawa I, Gabazza EC, Ikeda M, Mizutani H. 2016. Enhanced wound healing by topical application of ointment containing a low concentration of povidone-iodine. J Wound Care 25:521–529. doi: 10.12968/jowc.2016.25.9.521. [PubMed] [CrossRef] [Google Scholar]

261. Goldenheim PD. 1993. An appraisal of povidone-iodine and wound healing. Postgrad Med J 69(Suppl 3):S97–S105. [PubMed] [Google Scholar]

262. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG. 2010. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev 2010:CD003557. doi: 10.1002/14651858.CD003557.pub3. [PubMed] [CrossRef] [Google Scholar]

263. Eggers M, Eickmann M, Kowalski K, Zorn J, Reimer K. 2015. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infect Dis 15:375. doi: 10.1186/s12879-015-1111-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Sabracos L, Romanou S, Dontas I, Coulocheri S, Ploumidou K, Perrea D. 2007. The in vitro effective antiviral action of povidone-iodine (PVP-I) may also have therapeutic potential by its intravenous administration diluted with Ringer's solution. Med Hypotheses 68:272–274. doi: 10.1016/j.mehy.2006.07.039. [PubMed] [CrossRef] [Google Scholar]

265. Tennen R, Setlow B, Davis KL, Loshon CA, Setlow P. 2000. Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J Appl Microbiol 89:330–338. doi: 10.1046/j.1365-2672.2000.01114.x. [PubMed] [CrossRef] [Google Scholar]

266. Hill RL, Casewell MW. 2000. The in-vitro activity of povidone-iodine cream against Staphylococcus aureus and its bioavailability in nasal secretions. J Hosp Infect 45:198–205. doi: 10.1053/jhin.2000.0733. [PubMed] [CrossRef] [Google Scholar]

267. Sheikh W. 1981. Development and validation of a neutralizer system for in vitro evaluation of some antiseptics. Antimicrob Agents Chemother 19:429–434. doi: 10.1128/AAC.19.3.429. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Capriotti K, Capriotti JA. 2012. Topical iodophor preparations: chemistry, microbiology, and clinical utility. Dermatol Online J 18:1. [PubMed] [Google Scholar]

269. Faoagali J, Fong J, George N, Mahoney P, O'Rourke V. 1995. Comparison of the immediate, residual, and cumulative antibacterial effects of Novaderm R,* Novascrub R,* Betadine surgical scrub, Hibiclens, and liquid soap. Am J Infect Control 23:337–343. doi: 10.1016/0196-6553(95)90263-5. [PubMed] [CrossRef] [Google Scholar]

270. Bolon M. 2011. Hand hygiene. Infect Dis Clin North Am 25:21–43. doi: 10.1016/j.idc.2010.11.001. [PubMed] [CrossRef] [Google Scholar]

271. Sroka S, Gastmeier P, Meyer E. 2010. Impact of alcohol hand-rub use on meticillin-resistant Staphylococcus aureus: an analysis of the literature. J Hosp Infect 74:204–211. doi: 10.1016/j.jhin.2009.08.023. [PubMed] [CrossRef] [Google Scholar]

272. Rotter ML, Koller W. 1990. Surgical hand disinfection: effect of sequential use of two chlorhexidine preparations. J Hosp Infect 16:161–166. doi: 10.1016/0195-6701(90)90060-2. [PubMed] [CrossRef] [Google Scholar]

273. Larson EL, Eke PI, Laughon BE. 1986. Efficacy of alcohol-based hand rinses under frequent-use conditions. Antimicrob Agents Chemother 30:542–544. doi: 10.1128/AAC.30.4.542. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

274. Bush LW, Benson LM, White JH. 1986. Pig skin as test substrate for evaluating topical antimicrobial activity. J Clin Microbiol 24:343–348. [PMC free article] [PubMed] [Google Scholar]

275. Morton HE. 1950. The relationship of concentration and germicidal efficiency of ethyl alcohol. Ann N Y Acad Sci 53:191–196. doi: 10.1111/j.1749-6632.1950.tb31944.x. [PubMed] [CrossRef] [Google Scholar]

276. Haft RJ, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A 111:E2576–E2585. doi: 10.1073/pnas.1401853111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. Woodruff LB, Pandhal J, Ow SY, Karimpour-Fard A, Weiss SJ, Wright PC, Gill RT. 2013. Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. Metab Eng 15:124–133. doi: 10.1016/j.ymben.2012.10.007. [PubMed] [CrossRef] [Google Scholar]

278. Gerando HM, Fayolle-Guichard F, Rudant L, Millah SK, Monot F, Ferreira NL, Lopez-Contreras AM. 2016. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling. Appl Microbiol Biotechnol 100:5427–5436. doi: 10.1007/s00253-016-7302-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

279. Akinosho H, Rydzak T, Borole A, Ragauskas A, Close D. 2015. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology 24:2156–2174. doi: 10.1007/s10646-015-1543-4. [PubMed] [CrossRef] [Google Scholar]

280. Luther MK, Bilida S, Mermel LA, LaPlante KL. 2015. Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infect Dis Ther 4:219–226. doi: 10.1007/s40121-015-0065-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

281. Knobloch JK, Horstkotte MA, Rohde H, Kaulfers PM, Mack D. 2002. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother 49:683–687. doi: 10.1093/jac/49.4.683. [PubMed] [CrossRef] [Google Scholar]

282. Nwugo CC, Arivett BA, Zimbler DL, Gaddy JA, Richards AM, Actis LA. 2012. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii. PLoS One 7:e51936. doi: 10.1371/journal.pone.0051936. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Fiester SE, Actis LA. 2013. Stress responses in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol 8:353–365. doi: 10.2217/fmb.12.150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

284. Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. 2012. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 67:1589–1596. doi: 10.1093/jac/dks129. [PubMed] [CrossRef] [Google Scholar]

285. Omidbakhsh N, Sattar SA. 2006. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. Am J Infect Control 34:251–257. doi: 10.1016/j.ajic.2005.06.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

286. Horn K, Otter JA. 2015. Hydrogen peroxide vapor room disinfection and hand hygiene improvements reduce Clostridium difficile infection, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and extended-spectrum beta-lactamase. Am J Infect Control 43:1354–1356. doi: 10.1016/j.ajic.2015.06.029. [PubMed] [CrossRef] [Google Scholar]

287. Barbut F, Menuet D, Verachten M, Girou E. 2009. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol 30:507–514. doi: 10.1086/597232. [PubMed] [CrossRef] [Google Scholar]

288. Hiti K, Walochnik J, Faschinger C, Haller-Schober EM, Aspock H. 2005. One- and two-step hydrogen peroxide contact lens disinfection solutions against Acanthamoeba: how effective are they? Eye (Lond) 19:1301–1305. doi: 10.1038/sj.eye.6701752. [PubMed] [CrossRef] [Google Scholar]

289. Rogez-Kreuz C, Yousfi R, Soufflet C, Quadrio I, Yan ZX, Huyot V, Aubenque C, Destrez P, Roth K, Roberts C, Favero M, Clayette P. 2009. Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization. Infect Control Hosp Epidemiol 30:769–777. doi: 10.1086/598342. [PubMed] [CrossRef] [Google Scholar]

290. Walker JT, Bradshaw DJ, Fulford MR, Marsh PD. 2003. Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl Environ Microbiol 69:3327–3332. doi: 10.1128/AEM.69.6.3327-3332.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

291. Hughes R, Kilvington S. 2001. Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob Agents Chemother 45:2038–2043. doi: 10.1128/AAC.45.7.2038-2043.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

292. Zubko EI, Zubko MK. 2013. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species. BMC Res Notes 6:272. doi: 10.1186/1756-0500-6-272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

293. Repine JE, Fox RB, Berger EM. 1981. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J Biol Chem 256:7094–7096. [PubMed] [Google Scholar]

294. Imlay JA, Chin SM, Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642. doi: 10.1126/science.2834821. [PubMed] [CrossRef] [Google Scholar]

295. Seier-Petersen MA, Nielsen LN, Ingmer H, Aarestrup FM, Agerso Y. 2015. Biocide susceptibility of Staphylococcus aureus CC398 and CC30 isolates from pigs and identification of the biocide resistance genes, qacG and qacC. Microb Drug Resist 21:527–536. doi: 10.1089/mdr.2014.0215. [PubMed] [CrossRef] [Google Scholar]

296. Deisseroth A, Dounce AL. 1970. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50:319–375. [PubMed] [Google Scholar]

297. Eason MM, Fan X. 2014. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens. Microb Pathog 74:50–58. doi: 10.1016/j.micpath.2014.07.002. [PubMed] [CrossRef] [Google Scholar]

298. Binesse J, Lindgren H, Lindgren L, Conlan W, Sjostedt A. 2015. Roles of reactive oxygen species-degrading enzymes of Francisella tularensis SCHU S4. Infect Immun 83:2255–2263. doi: 10.1128/IAI.02488-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

299. Painter KL, Strange E, Parkhill J, Bamford KB, Armstrong-James D, Edwards AM. 2015. Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun 83:1830–1844. doi: 10.1128/IAI.03016-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

300. Baureder M, Reimann R, Hederstedt L. 2012. Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis. FEMS Microbiol Lett 331:160–164. doi: 10.1111/j.1574-6968.2012.02567.x. [PubMed] [CrossRef] [Google Scholar]

301. Sun D, Crowell SA, Harding CM, De Silva PM, Harrison A, Fernando DM, Mason KM, Santana E, Loewen PC, Kumar A, Liu Y. 2016. KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life Sci 148:31–40. doi: 10.1016/j.lfs.2016.02.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

302. Kresken M, Hafner D, Schmitz FJ, Wichelhaus TA, Paul-Ehrlich-Society for Chemotherapy. 2004. Prevalence of mupirocin resistance in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis: results of the Antimicrobial Resistance Surveillance Study of the Paul-Ehrlich-Society for Chemotherapy, 2001. Int J Antimicrob Agents 23:577–581. doi: 10.1016/j.ijantimicag.2003.11.007. [PubMed] [CrossRef] [Google Scholar]

303. Petinaki E, Spiliopoulou I, Kontos F, Maniati M, Bersos Z, Stakias N, Malamou-Lada H, Koutsia-Carouzou C, Maniatis AN. 2004. Clonal dissemination of mupirocin-resistant staphylococci in Greek hospitals. J Antimicrob Chemother 53:105–108. doi: 10.1093/jac/dkh028. [PubMed] [CrossRef] [Google Scholar]

304. Rossney A, O'Connell S. 2008. Emerging high-level mupirocin resistance among MRSA isolates in Ireland. Euro Surveill 13:8084. [PubMed] [Google Scholar]

305. Donker GA, Deurenberg RH, Driessen C, Sebastian S, Nys S, Stobberingh EE. 2009. The population structure of Staphylococcus aureus among general practice patients from The Netherlands. Clin Microbiol Infect 15:137–143. doi: 10.1111/J.1469-0691.2008.02662.X. [PubMed] [CrossRef] [Google Scholar]

306. McDanel JS, Murphy CR, Diekema DJ, Quan V, Kim DS, Peterson EM, Evans KD, Tan GL, Hayden MK, Huang SS. 2013. Chlorhexidine and mupirocin susceptibilities of methicillin-resistant Staphylococcus aureus from colonized nursing home residents. Antimicrob Agents Chemother 57:552–558. doi: 10.1128/AAC.01623-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

307. Suwantarat N, Carroll KC, Tekle T, Ross T, Popoola VO, Milstone AM. 2015. Low prevalence of mupirocin resistance among hospital-acquired methicillin-resistant Staphylococcus aureus isolates in a neonatal intensive care unit with an active surveillance cultures and decolonization program. Infect Control Hosp Epidemiol 36:232–234. doi: 10.1017/ice.2014.17. [PubMed] [CrossRef] [Google Scholar]

308. Sciortino CV, Kemper M, Parthasarathy L, Lay J. 2015. Surveillance of methicillin-resistant Staphylococcus aureus mupirocin resistance in a Veterans Affairs Hospital. Infect Control Hosp Epidemiol 36:235–236. doi: 10.1017/ice.2014.10. [PubMed] [CrossRef] [Google Scholar]

309. Lee H, Lim H, Bae IK, Yong D, Jeong SH, Lee K, Chong Y. 2013. Coexistence of mupirocin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates from Korea. Diagn Microbiol Infect Dis 75:308–312. doi: 10.1016/j.diagmicrobio.2012.11.025. [PubMed] [CrossRef] [Google Scholar]

310. Horner C, Utsi L, Coole L, Denton M. 2017. Epidemiology and microbiological characterization of clinical isolates of Staphylococcus aureus in a single healthcare region of the UK, 2015. Epidemiol Infect 145:386–396. doi: 10.1017/S0950268816002387. [PubMed] [CrossRef] [Google Scholar]

311. Fang H, Froding I, Gian B, Haeggman S, Tollstrom UB, Ullberg M, Nord CE. 2016. Methicillin-resistant Staphylococcus aureus in Stockholm, Sweden: molecular epidemiology and antimicrobial susceptibilities to ceftaroline, linezolid, mupirocin and vancomycin in 2014. J Glob Antimicrob Resist 5:31–35. doi: 10.1016/j.jgar.2016.01.012. [PubMed] [CrossRef] [Google Scholar]

312. Ghasemzadeh-Moghaddam H, van Belkum A, Hamat RA, van Wamel W, Neela V. 2014. Methicillin-susceptible and -resistant Staphylococcus aureus with high-level antiseptic and low-level mupirocin resistance in Malaysia. Microb Drug Resist 20:472–477. doi: 10.1089/mdr.2013.0222. [PubMed] [CrossRef] [Google Scholar]

313. Warren DK, Prager M, Munigala S, Wallace MA, Kennedy CR, Bommarito KM, Mazuski JE, Burnham CA. 2016. Prevalence of qacA/B genes and mupirocin resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates in the setting of chlorhexidine bathing without mupirocin. Infect Control Hosp Epidemiol 37:590–597. doi: 10.1017/ice.2016.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

314. Coombs GW, Daly DA, Pearson JC, Nimmo GR, Collignon PJ, McLaws ML, Robinson JO, Turnidge JD. 2014. Community-onset Staphylococcus aureus Surveillance Programme annual report, 2012. Commun Dis Intell Q Rep 38:E59–E69. [PubMed] [Google Scholar]

315. Coombs GW, Nimmo GR, Pearson JC, Collignon PJ, Bell JM, McLaws ML, Christiansen KJ, Turnidge JD. 2013. Australian Group on Antimicrobial Resistance Hospital-Onset Staphylococcus aureus Surveillance Programme annual report, 2011. Commun Dis Intell Q Rep 37:E210–E218. [PubMed] [Google Scholar]

316. den Heijer CD, van Bijnen EM, Paget WJ, Stobberingh EE. 2014. Fusidic acid resistance in Staphylococcus aureus nasal carriage strains in nine European countries. Future Microbiol 9:737–745. doi: 10.2217/fmb.14.36. [PubMed] [CrossRef] [Google Scholar]

317. McLaws FB, Larsen AR, Skov RL, Chopra I, O'Neill AJ. 2011. Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:1173–1176. doi: 10.1128/AAC.00817-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

318. Souli M, Karaiskos I, Galani L, Maraki S, Perivolioti E, Argyropoulou A, Charissiadou A, Zachariadou L, Tsiplakou S, Papaioannou V, Tsorlini H, Katsifa H, Baka V, Pantazi P, Paschali A, Kyratsa A, Trikka-Graphakos E, Giannopoulou P, Vogiatzakis E, Moraitou H, Papadogeorgaki H, Avgerinou H, Panagea T, Pantazatou A, Petinaki E, Stamatopoulou G, Toutouza M, Karatzoglou I, Kontopoulou K, Orfanidou M, Karantani I, Fytas P, Tzanetou K, Platsouka E, Kazila P, Chli A, Statiri N, Giamarellou H. 2016. Nationwide surveillance of resistance rates of Staphylococcus aureus clinical isolates from Greek hospitals, 2012–2013. Infect Dis (Lond) 48:287–292. doi: 10.3109/23744235.2015.1110858. [PubMed] [CrossRef] [Google Scholar]

319. Jones RN, Mendes RE, Sader HS, Castanheira M. 2011. In vitro antimicrobial findings for fusidic acid tested against contemporary (2008–2009) gram-positive organisms collected in the United States. Clin Infect Dis 52(Suppl 7):S477–S486. doi: 10.1093/cid/cir163. [PubMed] [CrossRef] [Google Scholar]

320. Coombs GW, Daley DA, Thin Lee Y, Pearson JC, Robinson JO, Nimmo GR, Collignon P, Howden BP, Bell JM, Turnidge JD, Australian Group on Antimicrobial Resistance. 2016. Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme annual report, 2014. Commun Dis Intell Q Rep 40:E244–E254. [PubMed] [Google Scholar]


Page 2

Theoretical advantages and disadvantages of topical antimicrobial therapy for bacterial skin infections

Advantage/disadvantage
Advantages
    May enable targeted delivery of a high concentration of antimicrobial to site of infection
    Higher likelihood of adherence to treatment (e.g., in children)
    Less potential for systemic side effects and toxicity
    May avoid need for systemic antimicrobials
    Ensures that site of infection is regularly inspected
    Topical application allows use and development of agents that may not be able to be used systemically (e.g., neomycin or bacitracin)
    Topical route of administration may be easier for patients and caregivers
Disadvantages
    Limited evidence base for clinical effectiveness
    Many agents associated with local allergy
    Limited understanding of potentially deleterious effects on skin microbiota
    Minimal depth of penetration, limiting use on intact skin
    Unquantified effects on wound healing process
    Widespread and unrestricted use is likely to select for bacterial resistance (e.g., fusidic acid and Staphylococcus aureus)
    Potential for storage in patient homes, with possibility of recurrent use and contamination
    Often combined with topical steroid therapy, meaning that primary prescribing indication may be for inflammation rather than infection
    Potential perception by both patients and prescribers as more “benign” than systemic antimicrobials
    May be difficult for some patients to apply to larger surface areas or skin folds