The importance of accurate anatomic positioning of leads on a patient when performing an ECG is to

1. Bond RR, Finlay DD, Nugent CD, Breen C, Guldenring D, Daly MJ. The effects of electrode misplacement on clinicians’ interpretation of the standard 12-lead electrocardiogram. Eur J Intern Med. 2012;23(7):610–615. doi: 10.1016/j.ejim.2012.03.011. [PubMed] [CrossRef] [Google Scholar]

2. Carley SD, Jenkins M, Jones KM. Body surface mapping versus the standard 12 lead ECG in the detection of myocardial infarction amongst emergency department patients: a Bayesian approach. Resuscitation. 2005;64(3):309–314. doi: 10.1016/j.resuscitation.2004.10.002. [PubMed] [CrossRef] [Google Scholar]

3. De Ambroggi L, Bertoni T, Breghi ML, Marconi M, Mosca M. Diagnostic value of body surface potential mapping in old anterior non-Q myocardial infarction. J Electrocardiol. 1988;21(4):321–329. doi: 10.1016/0022-0736(88)90108-2. [PubMed] [CrossRef] [Google Scholar]

4. Fereniec M, Kania M, Stix G, Mroczka T, Maniewski R (2007) Relation between depolarization and repolarization phases in body surface QRST integral map. In: Computers in cardiology, Durham, North Carolina, USA, pp 439–442

5. Fereniec M, Maniewski R, Karpinski G, Opolski G, Rix H. High-resolution multichannel measurement and analysis of cardiac repolarization. Biocybern Biomed Eng. 2008;28(3):61–69. [Google Scholar]

6. Fereniec M, Stix G, Kania M, Mroczka T, Janusek D, Maniewski R (2011) Risk assessment of ventricular arrhythmia using new parameters based on high resolution body surface potential mapping. Med Sci Monit 17(3):MT26-MT33 [PMC free article] [PubMed]

7. Finlay DD, Nugent CD, Kellett JG, Donnelly MP, McCullagh PJ, Black ND. Synthesising the 12-lead electrocardiogram: Trends and challenges. Eur J Intern Med. 2007;18(8):566–570. doi: 10.1016/j.ejim.2007.04.011. [PubMed] [CrossRef] [Google Scholar]

8. Finlay DD, Nugent CD, Nelwan SP, Bond RR, Donnelly MP, Guldenring D. Effects of electrode placement errors in the EASI-derived 12-lead electrocardiogram. J Electrocardiol. 2010;43(6):606–611. doi: 10.1016/j.jelectrocard.2010.07.004. [PubMed] [CrossRef] [Google Scholar]

9. Herman MV, Ingram DA, Levy JA, Cook JR, Athans RJ. Variability of electrocardiographic precordial lead placement: a method to improve accuracy and reliability. Clin Cardiol. 1991;14(6):469–476. [PubMed] [Google Scholar]

10. Hoekema R, Uijen GJ, van Erning L, van Oosterom A. Interindividual variability of multilead electrocardiographic recordings: influence of heart position. J Electrocardiol. 1999;32(2):137–148. doi: 10.1016/S0022-0736(99)90092-4. [PubMed] [CrossRef] [Google Scholar]

11. Kania M, Fereniec M, Janusek D, Zbiec A, Kepski R, Karpinski G, Maniewski R. Optimal ECG lead system for arrhythmia assessment with use of TCRT parameter. Biocybern Biomed Eng. 2009;29(2):75–82. [Google Scholar]

12. Kerwin AJ, McLean R, Tegelaar H. A method for the accurate placement of chest electrodes in the taking of serial electrocardiographic tracings. Can Med Assoc J. 1960;82:258–261. [PMC free article] [PubMed] [Google Scholar]

13. Khaddoumi B, Rix H, Meste O, Fereniec M, Maniewski R. Body surface ECG signal shape dispersion. IEEE Trans Biomed Eng. 2006;53(12 Pt 1):2491–2500. doi: 10.1109/TBME.2006.881785. [PubMed] [CrossRef] [Google Scholar]

14. Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, van Herpen G, Kors JA, Macfarlane P, Mirvis DM, Pahlm O, Rautaharju P, Wagner GS. Recommendations for the standardization and interpretation of the electrocardiogram. Part I: the electrocardiogram and its technology. A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Heart Rhythm. 2007;4(3):394–412. doi: 10.1016/j.hrthm.2007.01.027. [PubMed] [CrossRef] [Google Scholar]

15. Lefebvre C, Hoekstra J. Early detection and diagnosis of acute myocardial infarction: the potential for improved care with next-generation, user-friendly electrocardiographic body surface mapping. Am J Emerg Med. 2007;25(9):1063–1072. doi: 10.1016/j.ajem.2007.06.011. [PubMed] [CrossRef] [Google Scholar]

16. Lehmann MH, Brugada R. Brugada syndrome: diagnostic pitfalls. J Emerg Med. 2009;37(1):79–81. doi: 10.1016/j.jemermed.2008.09.038. [PubMed] [CrossRef] [Google Scholar]

17. MacLeod R, Ni Q, Punske B, Ershler P, Yilmaz B, Taccardi B. Effects of heart position on the body-surface electrocardiogram. J Electrocardiol. 2000;33:229–237. doi: 10.1054/jelc.2000.20357. [PubMed] [CrossRef] [Google Scholar]

18. McCann K, Holdgate A, Mahammad R, Waddington A. Accuracy of ECG electrode placement by emergency department clinicians. Emerg Med Australas. 2007;19(5):442–448. doi: 10.1111/j.1742-6723.2007.01004.x. [PubMed] [CrossRef] [Google Scholar]

19. Nelwan SP, Kors JA, Meij SH, van Bemmel JH, Simoons ML. Reconstruction of the 12-lead electrocardiogram from reduced lead sets. J Electrocardiol. 2004;37(1):11–18. doi: 10.1016/j.jelectrocard.2003.10.004. [PubMed] [CrossRef] [Google Scholar]

20. Rajaganeshan R, Ludlam C, Francis D, Parasramka S, Sutton R. Accuracy in ECG lead placement among technicians, nurses, general physicians and cardiologists. Int J Clin Pract. 2008;62(1):65–70. doi: 10.1111/j.1742-1241.2007.01390..x. [PubMed] [CrossRef] [Google Scholar]

21. Rautaharju PM, Park L, Rautaharju FS, Crow R. A standardized procedure for locating and documenting ECG chest electrode positions: consideration of the effect of breast tissue on ECG amplitudes in women. J Electrocardiol. 1998;31(1):17–29. doi: 10.1016/S0022-0736(98)90003-6. [PubMed] [CrossRef] [Google Scholar]

22. Rix H, Malengé JP. Detecting small variations in shape. IEEE Trans Syst Man Cybern. 1980;10(2):90–96. doi: 10.1109/TSMC.1980.4308438. [CrossRef] [Google Scholar]

23. Rudiger A, Hellermann JP, Mukherjee R, Follath F, Turina J. Electrocardiographic artifacts due to electrode misplacement and their frequency in different clinical settings. Am J Emerg Med. 2007;25(2):174–178. doi: 10.1016/j.ajem.2006.06.018. [PubMed] [CrossRef] [Google Scholar]

24. Rudiger A, Schob L, Follath F. Influence of electrode misplacement on the electrocardiographic signs of inferior myocardial ischemia. Am J Emerg Med. 2003;21(7):574–577. doi: 10.1016/j.ajem.2003.08.007. [PubMed] [CrossRef] [Google Scholar]

25. Sandwell DT. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys Res Lett. 1987;2:139–142. doi: 10.1029/GL014i002p00139. [CrossRef] [Google Scholar]

26. Schijvenaars BJ, Kors JA, van Herpen G, Kornreich F, van Bemmel JH. Effect of electrode positioning on ECG interpretation by computer. J Electrocardiol. 1997;30(3):247–256. doi: 10.1016/S0022-0736(97)80010-6. [PubMed] [CrossRef] [Google Scholar]

27. Schijvenaars BJ, van Herpen G, Kors JA. Intraindividual variability in electrocardiograms. J Electrocardiol. 2008;41(3):190–196. doi: 10.1016/j.jelectrocard.2008.01.012. [PubMed] [CrossRef] [Google Scholar]

28. Schijvenaars RJ, Kors JA, van Herpen G, van Bemmel JH. Use of the standard 12-lead ECG to simulate electrode displacements. J Electrocardiol. 1996;29(Suppl):5–9. doi: 10.1016/S0022-0736(96)80002-1. [PubMed] [CrossRef] [Google Scholar]

29. SippensGroenewegen A, Spekhorst H, van Hemel NM, Kingma JH, Hauer RN, de Bakker JM, Grimbergen CA, Janse MJ, Dunning AJ (1993) Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12-lead electrocardiogram. Circulation 88(5 Pt 1):2290–2306 [PubMed]

30. Soliman EZ. A simple measure to control for variations in chest electrodes placement in serial electrocardiogram recordings. J Electrocardiol. 2008;41(5):378–379. doi: 10.1016/j.jelectrocard.2008.05.008. [PubMed] [CrossRef] [Google Scholar]

31. Svehlíkova J, Kania M, Turzova M, Heblakova E, Tysler M, Maniewski R. Identification of ischemic lesions based on difference integral maps, comparison of several ECG intervals. Meas Sci Rev. 2009;9(5):117–121. doi: 10.2478/v10048-009-0021-7. [CrossRef] [Google Scholar]

32. Szakolczai K, Haraszti K, Kozmann G. Estimation and reproducibility issues in ECG signal monitoring: A simulation study. Meas Sci Rev. 2003;3(2):99–102. [Google Scholar]

33. Turzova M, Tysler M, Kneppo P. A model study of the sensitivity of body surface potential distribution to variations of electrode placement. J Electrocardiol. 1994;27(3):255–262. doi: 10.1016/S0022-0736(94)80010-3. [PubMed] [CrossRef] [Google Scholar]

34. van Oosterom A, Hoekema R, Uijen GJ. Geometrical factors affecting the interindividual variability of the ECG and the VCG. J Electrocardiol. 2000;33(Suppl):219–227. doi: 10.1054/jelc.2000.20356. [PubMed] [CrossRef] [Google Scholar]


Page 2

The importance of accurate anatomic positioning of leads on a patient when performing an ECG is to

Medical & Biological Engineering & Computing

Maximal observed changes of ECG morphology at 1 and 5 cm distance from precordial electrode positions

ParameterCardiac phasePrecordial electrode
V1 V2 V3 V4 V5 V6
1 cm
 Δ¯ (ms)QRS complex0.7 ± 0.4 0.9 ± 1.9 0.5 ± 0.80.2 ± 0.10.1 ± 0.10.1 ± 0.1
ST-T-U segment 0.3 ± 0.2 0.2 ± 0.20.2 ± 0.20.2 ± 0.10.1 ± 0.10.1 ± 0.1
 RMSE¯ (μV)QRS complex41 ± 2248 ± 28 67 ± 35 41 ± 2328 ± 1321 ± 10
ST-T-U segment13 ± 911 ± 8 13 ± 9 8 ± 55 ± 44 ± 3
 NRMSE¯ (%)QRS complex4 ± 23 ± 2 4 ± 3 3 ± 22 ± 13 ± 2
ST-T-U segment 6 ± 5 3 ± 35 ± 44 ± 33 ± 33 ± 2
  QRS complex 0.99 ± 0.03 0.99 ± 0.010.99 ± 0.010.99 ± 0.010.99 ± 0.010.99 ± 0.01
ST-T-U segment 0.98 ± 0.07 0.99 ± 0.010.99 ± 0.030.99 ± 0.020.99 ± 0.030.99 ± 0.01
5 cm
 Δ¯ (ms)QRS complex 2.7 ± 2.7 2.5 ± 3.32.6 ± 2.41.2 ± 0.90.8 ± 0.40.7 ± 0.4
ST-T-U segment 1.6 ± 1.4 0.7 ± 0.81.2 ± 1.00.9 ± 0.80.6 ± 0.50.6 ± 0.5
 RMSE¯ (μV)QRS complex235 ± 126292 ± 158 344 ± 192 235 ± 140145 ± 65125 ± 63
ST-T-U segment 73 ± 53 69 ± 5263 ± 4446 ± 3327 ± 1923 ± 19
 NRMSE¯ (%)QRS complex15 ± 816 ± 8 18 ± 9 14 ± 1012 ± 412 ± 5
ST-T-U segment 19 ± 11 16 ± 916 ± 1015 ± 913 ± 614 ± 7
  QRS complex0.85 ± 0.280.83 ± 0.28 0.78 ± 0.28 0.82 ± 0.320.94 ± 0.130.93 ± 0.10
ST-T-U segment0.85 ± 0.330.90 ± 0.24 0.82 ± 0.31 0.86 ± 0.320.90 ± 0.220.91 ± 0.22