Como calcular aproximações raiz quadrada de 31

Antes de partir para o cálculo de raízes não exatas propriamente dito, é necessário relembrar como calcular raízes de um modo geral e o que são raízes exatas e não exatas.

Calculando raízes

Calcular a raiz de um número resume-se a procurar por outro número que, multiplicado por ele mesmo determinada quantidade de vezes, tenha como resultado o número dado.

A representação de raízes é feita da seguinte maneira:

*n, chamado de índice, é o número de fatores da potência que gerou a, chamado de radicando, e L é o resultado, chamado de raiz.

Desse modo, L é um número que foi multiplicado por si mesmo n vezes e o resultado dessa multiplicação foi a.

L·L·L·L...L·L = a

Raízes exatas e não exatas

Dizemos que uma raiz é exata quando L é um número inteiro. São alguns exemplos de raízes exatas:

a) A raiz quadrada de 9, pois 3·3 = 9

b) A raiz cúbica de 8, pois 2·2·2 = 8

c) A raiz quarta de 16, pois 2·2·2·2 = 16

Entretanto, quando não é possível encontrar número inteiro que seja raiz de um número, então, essa raiz não é exata. Todas elas pertencem ao conjunto dos números irracionais e, por isso, todas elas são decimais infinitos. São alguns exemplos de raízes não exatas:

a) Raiz quadrada de 2

b) Raiz cúbica de 3

c) Raiz quarta de 5

Cálculo de raízes não exatas

Caso 1 – Radicando primo

Se o radicando pertence ao conjunto dos números primos, é preciso procurar por valores aproximados para sua raiz. Esse cálculo é feito procurando-se por raízes exatas próximas ao radicando e, posteriormente, aproximando a raiz do radicando tendo como base a raiz exata mais próxima. Por exemplo, calculemos a raiz cúbica de 31:

Na imagem anterior, vimos que a raiz cúbica de 31 tem um resultado decimal entre 3 e 4. Para descobrir uma aproximação de L, é necessário definir quantas casas decimais ele deve ter e procurar pelo número que, elevado ao cubo, mais se aproxime de 31. No exemplo, usaremos uma aproximação com duas casas decimais. Portanto, L = 3,14, pois:

3,143 = 30,959144

Caso 2 – Radicando não primo

Quando o radicando não é primo, decomponha-o em fatores primos e agrupe esses fatores em potências cujo expoente seja igual ao índice do radicando. Isso permitirá o cálculo imediato de todos os fatores cujo expoente é igual ao índice e resumirá os cálculos às raízes dos menores números primos possíveis para aquela raiz.

Exemplo:

Sabendo que a raiz cúbica de 2 é aproximadamente 1,26, calcule a raiz cúbica de 256. Em outras palavras, calcule:

Solução: Primeiramente, obtenha a decomposição em fatores primos de 256:

256|2 128|2   64|2   32|2   16|2    8|2    4|2    2|2

1

256 = 23·23·22

Agora, reagrupe os fatores em potências de expoente 3 dentro do radical. Observe:

Por fim, é possível utilizar uma das propriedades dos radicais para simplificar a raiz acima. Portanto, reescreva a igualdade da seguinte maneira para obter o resultado indicado:

Para encontrar o valor numérico da expressão acima, note que o resultado traz uma raiz cúbica de 2 elevado ao quadrado. Podemos reescrever da seguinte maneira:

Substitua as raízes cúbicas de 2 pelo valor dado no exercício e realize a multiplicação.

4·1,26·1,26 = 6,35

Por Luiz Paulo Moreira

Graduado em Matemática

Fala, pessoal!

Neste artigo, vou ensinar uma maneira muito prática para calcular uma excelente aproximação para a raiz n-ésima de um número p qualquer

O método que mostrarei a seguir é um caso particular do Método de Newton-Raphson.

Vamos começar com a raiz quadrada para que você possa entender o método. Adaptando o método de Newton-Raphson, obtemos que a raiz quadrada de p pode ser aproximada por:

Na fórmula acima, x é uma aproximação qualquer para a raiz quadrada de p. 

Exemplo 1: Calcular uma aproximação para √405,4.

Ora, sabemos que √400=20. Assim, podemos usar 20 como uma aproximação inicial para √405,4, ou seja, x = 20. Ficamos com:

Na calculadora, observamos que o valor exato é 20,13454742… . Obtivemos uma excelente aproximação!!!

Exemplo 2: Calcular uma aproximação para √193. 

Ora, sabemos que 142 = 196. Logo, podemos usar x = 14 como aproximação inicial.

Mais uma excelente aproximação!!! Na calculadora, tem-se que √193 = 13,89244399… .

Vamos agora generalizar. Utilizando o método de Newton-Raphson, fiz uma adaptação para obtermos excelentes aproximações para raízes de qualquer índice. A fórmula é a seguinte:

Na fórmula acima, x é uma primeira aproximação para a raiz procurada.

Vamos fazer alguns exemplos para praticar.

Exemplo 3: Calcular uma aproximação para 

Como calcular aproximações raiz quadrada de 31
Como calcular aproximações raiz quadrada de 31

Ora, sabemos que 63 = 216. Logo, podemos utilizar x = 6 para calcular a aproximação. Temos ainda que n = 3 e p = 237. Ficamos com:

Na calculadora, obtém-se o valor exato de 6,18846…, ou seja, o nosso erro foi de apenas 0,09%.

Exemplo 4: Calcular uma aproximação para

Como calcular aproximações raiz quadrada de 31
Como calcular aproximações raiz quadrada de 31

Sabemos que 27 = 128. Logo, podemos utilizar x = 2 para calcular a aproximação.

Na calculadora, obtém-se o valor exato de 2,0278…, ou seja, o nosso erro foi de apenas 0,05%.

Veja que o caso anterior da raiz quadrada é apenas um caso particular dessa fórmula geral em que n = 2.

Espero que tenham gostado!

Um forte abraço,

Guilherme Neves

A raiz quadrada aproximada é utilizada quando precisamos calcular a raiz quadrada de um número que não possui raiz exata. Quando isso ocorre, é necessário utilizar uma aproximação, porque a raiz quadrada nesse caso forma uma dízima não periódica. Para descobrir uma aproximação da raiz quadrada, primeiramente encontramos entre quais números naturais a raiz quadrada se situa. Posteriormente, podemos analisar o valor da casa decimal, encontrando o valor que mais se aproxima da raiz quadrada desejada.

Leia também: Raiz cúbica — o caso de radiciação em que o 3 é o índice do radical

Videoaula sobre raiz quadrada aproximada

Raiz quadrada aproximada x Raiz quadrada exata

Existem dois casos possíveis para a raiz quadrada de um número natural: o resultado pode ser uma raiz quadrada exata ou não. Os números que possuem raiz quadrada exata são conhecidos como quadrados perfeitos. Veja alguns deles a seguir:

  • \( \sqrt0=0\)

  • \( \sqrt1=1\)

  • \( \sqrt4=2\)

  • \( \sqrt9=3\)

  • \( \sqrt{16}=4\)

  • \( \sqrt{25}=5\)

  • \( \sqrt{36}=6\)

  • \( \sqrt{49}=7\)

  • \( \sqrt{64}=8\)

  • \( \sqrt{81}=9\)

  • \( \sqrt{100}=10\)

  • \( \sqrt{121}=11\)

  • \( \sqrt{144}=12\)

  • \( \sqrt{169}=13\)

  • \( \sqrt{196}=14\)

  • \(\sqrt{225}=15\)

Quando o número natural não é um quadrado perfeito, a raiz quadrada desse número é uma dízima não periódica, como a raiz de 3 a seguir:

\(\sqrt3=1.73205080756887729362772\ldots\)

Quando a raiz quadrada não é um número exato, é possível encontrar uma aproximação para o valor da raiz.

Quando a raiz quadrada não é exata, podemos calcular a raiz quadrada aproximada. Para isso, é necessário, inicialmente, encontrar entre quais quadrados perfeitos esse número se situa. Posteriormente, encontramos o intervalo em que a raiz quadrada desse número está. Por fim, determinamos a casa decimal por tentativa.

Calcularemos o valor da \(\sqrt{20}\), por aproximação.

Resolução:

De início, encontraremos entre quais quadrados perfeitos o número 20 está:

16 < 20 < 25

Posteriormente, encontraremos entre quais valores está a raiz quadrada de 20:

\(\sqrt{16}<\sqrt{20}<\sqrt{25}\)

\(4<\sqrt{20}<5\)

Sabemos que \(\sqrt{20} \) está entre 4 e 5, logo a parte inteira é 4, que é o menor dentre os valores.

Encontraremos a primeira casa decimal calculando o quadrado dos valores que estão entre 4,1 e 4,9 e descobrindo entre quais desses números a \(\sqrt{20}\) está. Para isso, calcularemos o quadrado de cada um deles até encontrar um número maior que 20:

4,1² = 16,81 4,2² = 17,64 4,3² = 18,49 4,4² = 19,36

4,5² = 20,25

Note que \(\sqrt{20}\) está entre 4,4 e 4,5.

Caso o objetivo seja encontrar uma aproximação com uma casa decimal, dizemos que:

\(\sqrt{20}=4,4\) por falta

\(\sqrt{20}=4,5 \) por excesso.

Podemos também encontrar a próxima casa decimal, agora que encontramos um novo intervalo para \(\sqrt{20}\):

\(4,4<\sqrt{20}<4,5\)

Testando os valores com duas casas decimais, temos que:

4,41² = 19,4481 4,42² = 19,5364 4,43² = 19,6249 4,44² = 19,7136 4,45² = 19,8025 4,46² = 19,8916 4,47² = 19,9809

4,48² = 20,0704

Agora, reduzimos mais ainda o intervalo, pois sabemos que a \(\sqrt{20}\) está entre 4,47 e 4,48.

\(\sqrt{20}\) = 4,47 por falta.

\(\sqrt{20}\) = 4,48 por excesso.

Podemos repetir esse procedimento para quantas casas decimais quisermos.

Calcule \(\sqrt2\).

Resolução:

1 < 2 < 4

Temos que:

\(\sqrt1<\sqrt2<\sqrt4\)

\(1<\sqrt2<2\)

Sabemos que \(\sqrt2\) é um número entre 1,1 e 1,9:

1,1² = 1,21 1,2² = 1,44 1,3² = 1,69 1,4² = 1,96

1,5² = 2,25

Portanto, \(\sqrt2\) está entre 1,4 e 1,5.

\(\sqrt2\) = 1,4 por falta.

\(\sqrt2\) = 1,5 por excesso.

Calculando a segunda casa decimal:

1,41² = 1,9881
1,42² = 2,0164

\(\sqrt2\) = 1,41 por falta.

\(\sqrt2\) = 1,42 por excesso.

Saiba também: O que é uma função raiz?

Exercícios resolvidos sobre raiz quadrada aproximada

Questão 1

Calculando o valor aproximado de \(\sqrt{60}\) com duas casas decimais por falta, encontramos:

A) 7,71

B) 7,72

C) 7,73

D) 7,74

E) 7,75

Resolução:

Alternativa D

O número 60 está entre os quadrados perfeitos 49 e 64:

\(49<60<64\)

\(\sqrt{49}<\sqrt{60}<\sqrt{64}\)

\(7<\sqrt{60}<8\)

Testando os números entre 7,1 e 7,9:

7,1² = 50,41 7,2² = 51,84 7,3² = 53,29 7,4² = 54,76 7,5² = 56,25 7,6² = 57,76 7,7² = 59,29

7,8² = 60,84

Então, temos que \(7,7<\sqrt{60}<7,8:\):

7,71² = 59,4441 7,72² = 59,5984 7,73² = 59,7529 7,74² = 59,9076

7,75² = 60,0625

A aproximação por falta é, portanto, 7,74.

Questão 2

O número 3,87 é a aproximação por falta de:

A) \(\sqrt{14}\)

B) \(\sqrt{15}\)

C) \(\sqrt{15}\)

D) \(\sqrt{17}\)

Resolução:

Alternativa B

Calculando o quadrado de 3,87:

3,87² = 14,9769

O número decimal 3,87 é a melhor aproximação por falta para \(\sqrt{15}\).